{"title":"Dual-Task Effect on Center of Pressure Oscillations and Prefrontal Cortex Activation Between Young and Older Adults.","authors":"Jiahao Pan, Shuqi Zhang","doi":"10.1080/02701367.2024.2365940","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose</b>: This study aimed to investigate the dual-task effect on conventional center of pressure (CoP) outcomes, CoP oscillations, and prefrontal cortex (PFC) activation between young and older adults. <b>Methods</b>: Fourteen healthy older adults (age: 66.25 ± 3.43 years) and another fourteen gender-matched young adults (age: 19.80 ± 0.75 years) participated in this study. Participants completed single-task and dual-task standing trials in a fixed order. The displacement of CoP and PFC activation were recorded using a Force plate and a functional near-infrared spectroscopy system, respectively. Two-way MANOVAs were used to examine the group and task effects. Additionally, the Pearson correlation analyses were used to investigate the relationship between CoP oscillations and PFC activation. <b>Results</b>: Our results showed a worse balance performance, greater CoP oscillations of 0-0.1 (11.03 ± 8.24 vs. 23.20 ± 12.54 cm<sup>2</sup>) and 0.1-0.5 (13.62 ± 9.30 vs. 30.00 ± 23.12 cm<sup>2</sup>) Hz in the medial-lateral direction and higher right (dorsomedial: -0.0003 ± 0.021 vs. 0.021 ± 0.021 & ventrolateral: 0.0087 ± 0.047 vs. 0.025 ± 0.045 mol/ml) and left (dorsomedial: 0.0033 ± 0.024 vs. 0.020 ± 0.025 & ventrolateral: 0.0060 ± 0.037 vs. 0.034 ± 0.037 mol/ml) PFC activation in response to a secondary cognitive task in older adults (<i>p</i> < .05). Older adults also showed significant positive correlations between CoP oscillations in the anterior-posterior direction and PFC activation under the single-task standing. <b>Conclusion</b>: These results suggest that older adults presented a loss of postural automaticity contributing to cognitive dysfunction. Moreover, heightened CoP oscillations at 0-0.5 Hz in response to a secondary cognitive task could provide evidence of a loss of automaticity, which might be associated with a greater reliance on the sensory inputs.</p>","PeriodicalId":94191,"journal":{"name":"Research quarterly for exercise and sport","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research quarterly for exercise and sport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02701367.2024.2365940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aimed to investigate the dual-task effect on conventional center of pressure (CoP) outcomes, CoP oscillations, and prefrontal cortex (PFC) activation between young and older adults. Methods: Fourteen healthy older adults (age: 66.25 ± 3.43 years) and another fourteen gender-matched young adults (age: 19.80 ± 0.75 years) participated in this study. Participants completed single-task and dual-task standing trials in a fixed order. The displacement of CoP and PFC activation were recorded using a Force plate and a functional near-infrared spectroscopy system, respectively. Two-way MANOVAs were used to examine the group and task effects. Additionally, the Pearson correlation analyses were used to investigate the relationship between CoP oscillations and PFC activation. Results: Our results showed a worse balance performance, greater CoP oscillations of 0-0.1 (11.03 ± 8.24 vs. 23.20 ± 12.54 cm2) and 0.1-0.5 (13.62 ± 9.30 vs. 30.00 ± 23.12 cm2) Hz in the medial-lateral direction and higher right (dorsomedial: -0.0003 ± 0.021 vs. 0.021 ± 0.021 & ventrolateral: 0.0087 ± 0.047 vs. 0.025 ± 0.045 mol/ml) and left (dorsomedial: 0.0033 ± 0.024 vs. 0.020 ± 0.025 & ventrolateral: 0.0060 ± 0.037 vs. 0.034 ± 0.037 mol/ml) PFC activation in response to a secondary cognitive task in older adults (p < .05). Older adults also showed significant positive correlations between CoP oscillations in the anterior-posterior direction and PFC activation under the single-task standing. Conclusion: These results suggest that older adults presented a loss of postural automaticity contributing to cognitive dysfunction. Moreover, heightened CoP oscillations at 0-0.5 Hz in response to a secondary cognitive task could provide evidence of a loss of automaticity, which might be associated with a greater reliance on the sensory inputs.