The Drosophila tumor necrosis factor Eiger promotes Myc supercompetition independent of canonical Jun N-terminal kinase signaling.

IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY
Genetics Pub Date : 2024-09-04 DOI:10.1093/genetics/iyae107
Albana L Kodra, Aditi Sharma Singh, Claire de la Cova, Marcello Ziosi, Laura A Johnston
{"title":"The Drosophila tumor necrosis factor Eiger promotes Myc supercompetition independent of canonical Jun N-terminal kinase signaling.","authors":"Albana L Kodra, Aditi Sharma Singh, Claire de la Cova, Marcello Ziosi, Laura A Johnston","doi":"10.1093/genetics/iyae107","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous factors have been implicated in the cell-cell interactions that lead to elimination of cells via cell competition, a context-dependent process of cell selection in somatic tissues that is based on comparisons of cellular fitness. Here, we use a series of genetic tests in Drosophila to explore the relative contribution of the pleiotropic cytokine tumor necrosis factor α (TNFα) in Myc-mediated cell competition (also known as Myc supercompetition or Myc cell competition). We find that the sole Drosophila TNF, Eiger (Egr), its receptor Grindelwald (Grnd/TNF receptor), and the adaptor proteins Traf4 and Traf6 are required to eliminate wild-type \"loser\" cells during Myc cell competition. Although typically the interaction between Egr and Grnd leads to cell death by activating the intracellular Jun N-terminal kinase (JNK) stress signaling pathway, our experiments reveal that many components of canonical JNK signaling are dispensable for cell death in Myc cell competition, including the JNKKK Tak1, the JNKK Hemipterous and the JNK Basket. Our results suggest that Egr/Grnd signaling participates in Myc cell competition but functions in a role that is largely independent of the JNK signaling pathway.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373512/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae107","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous factors have been implicated in the cell-cell interactions that lead to elimination of cells via cell competition, a context-dependent process of cell selection in somatic tissues that is based on comparisons of cellular fitness. Here, we use a series of genetic tests in Drosophila to explore the relative contribution of the pleiotropic cytokine tumor necrosis factor α (TNFα) in Myc-mediated cell competition (also known as Myc supercompetition or Myc cell competition). We find that the sole Drosophila TNF, Eiger (Egr), its receptor Grindelwald (Grnd/TNF receptor), and the adaptor proteins Traf4 and Traf6 are required to eliminate wild-type "loser" cells during Myc cell competition. Although typically the interaction between Egr and Grnd leads to cell death by activating the intracellular Jun N-terminal kinase (JNK) stress signaling pathway, our experiments reveal that many components of canonical JNK signaling are dispensable for cell death in Myc cell competition, including the JNKKK Tak1, the JNKK Hemipterous and the JNK Basket. Our results suggest that Egr/Grnd signaling participates in Myc cell competition but functions in a role that is largely independent of the JNK signaling pathway.

果蝇 TNF Eiger 可促进 Myc 超级竞争,而不依赖于典型的 JNK 信号。
细胞竞争是体细胞组织中一种基于细胞适应性比较的、依赖于环境的细胞选择过程。在这里,我们利用果蝇的一系列遗传测试来探讨多效细胞因子肿瘤坏死因子⍺(TNF⍺)在Myc介导的细胞竞争(也称为Myc超级竞争或Myc细胞竞争)中的相对贡献。我们发现,果蝇唯一的 TNF、Eiger(Egr)、其受体 Grindelwald(Grnd/TNFR)以及适配蛋白 Traf4 和 Traf6 是在 Myc 细胞竞争中消灭野生型 "失败者 "细胞所必需的。尽管通常情况下,Egr和Grnd之间的相互作用会通过激活细胞内Jun N-末端激酶(JNK)应激信号通路导致细胞死亡,但我们的实验发现,在Myc细胞竞争中,许多典型JNK信号通路的成分对细胞死亡是不可或缺的,包括JNKK Tak1、JNKK Hemipterous(Hep)和JNK Basket(Bsk)。我们的研究结果表明,Egr/Grnd 信号参与了 Myc 细胞竞争,但其作用在很大程度上独立于 JNK 信号途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信