{"title":"Utilization of geospatial distribution in the measurement of study cohort representativeness","authors":"","doi":"10.1016/j.jbi.2024.104687","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>The ability to apply results from a study to a broader population remains a primary objective in translational science. Distinct from intrinsic elements of scientific rigor, the extrinsic concept of generalization requires there be alignment between a study cohort and population in which results are expected to be applied. Widespread efforts have been made to quantify representativeness of study cohorts. These techniques, however, often consider the study and target cohorts as monolithic collections that can be directly compared. Overlooking known impacts to health from socio-demographic and environmental factors tied to individual’s geographical location, and potentially obfuscating misalignment in underrepresented population subgroups. This manuscript introduces several measures to account for geographic information in the assessment of cohort representation.</p></div><div><h3>Methods</h3><p>Metrics were defined across two themes: First, <em>measures of recruitment,</em> to assess if a study cohort is drawn at an expected rate and in an expected geographical pattern with respect to individuals in a reference cohort. Second, <em>measures of individual characteristics,</em> to assess if the individuals in the study cohort accurately reflect the sociodemographic, clinical, and geographic diversity observed across a reference cohort while accounting for the geospatial proximity of individuals.</p></div><div><h3>Results</h3><p>As an empirical demonstration, methods are applied to an active clinical study examining asthma in Black/African American patients at a US Midwestern pediatric hospital. Results illustrate how areas of over- and under-recruitment can be identified and contextualized in light of study recruitment patterns at an individual-level, highlighting the ability to identify a subset of features for which the study cohort closely resembled the broader population. In addition they provide an opportunity to dive deeper into misalignments, to identify study cohort members that are in some way distinct from the communities for which they are expected to represent.</p></div><div><h3>Conclusion</h3><p>Together, these metrics provide a comprehensive spatial assessment of a study cohort with respect to a broader target population. Such an approach offers researchers a toolset by which to target expected generalization of results derived from a given study.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"157 ","pages":"Article 104687"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1532046424001059/pdfft?md5=d8afd893b376d6738e0d2c0c882fac22&pid=1-s2.0-S1532046424001059-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424001059","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
The ability to apply results from a study to a broader population remains a primary objective in translational science. Distinct from intrinsic elements of scientific rigor, the extrinsic concept of generalization requires there be alignment between a study cohort and population in which results are expected to be applied. Widespread efforts have been made to quantify representativeness of study cohorts. These techniques, however, often consider the study and target cohorts as monolithic collections that can be directly compared. Overlooking known impacts to health from socio-demographic and environmental factors tied to individual’s geographical location, and potentially obfuscating misalignment in underrepresented population subgroups. This manuscript introduces several measures to account for geographic information in the assessment of cohort representation.
Methods
Metrics were defined across two themes: First, measures of recruitment, to assess if a study cohort is drawn at an expected rate and in an expected geographical pattern with respect to individuals in a reference cohort. Second, measures of individual characteristics, to assess if the individuals in the study cohort accurately reflect the sociodemographic, clinical, and geographic diversity observed across a reference cohort while accounting for the geospatial proximity of individuals.
Results
As an empirical demonstration, methods are applied to an active clinical study examining asthma in Black/African American patients at a US Midwestern pediatric hospital. Results illustrate how areas of over- and under-recruitment can be identified and contextualized in light of study recruitment patterns at an individual-level, highlighting the ability to identify a subset of features for which the study cohort closely resembled the broader population. In addition they provide an opportunity to dive deeper into misalignments, to identify study cohort members that are in some way distinct from the communities for which they are expected to represent.
Conclusion
Together, these metrics provide a comprehensive spatial assessment of a study cohort with respect to a broader target population. Such an approach offers researchers a toolset by which to target expected generalization of results derived from a given study.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.