Itaconate is a metabolic regulator of bone formation in homeostasis and arthritis.

IF 20.3 1区 医学 Q1 RHEUMATOLOGY
Markus Kieler, Leona Sophia Prammer, Gerwin Heller, Melanie Hofmann, Simon Sperger, Dominik Hanetseder, Birgit Niederreiter, Andrea Komljenovic, Kristaps Klavins, Thomas Köcher, Julia Stefanie Brunner, Irena Stanic, Laura Oberbichler, Ana Korosec, Andrea Vogel, Martina Kerndl, Dominika Hromadová, Laszlo Musiejovsky, Alexander Hajto, Anja Dobrijevic, Tina Piwonka, Arvand Haschemi, Anne Miller, Philippe Georgel, Darja Marolt Presen, Johannes Grillari, Silvia Hayer, Jean-Philippe Auger, Gerhard Krönke, Omar Sharif, Daniel Aletaha, Gernot Schabbauer, Stephan Blüml
{"title":"Itaconate is a metabolic regulator of bone formation in homeostasis and arthritis.","authors":"Markus Kieler, Leona Sophia Prammer, Gerwin Heller, Melanie Hofmann, Simon Sperger, Dominik Hanetseder, Birgit Niederreiter, Andrea Komljenovic, Kristaps Klavins, Thomas Köcher, Julia Stefanie Brunner, Irena Stanic, Laura Oberbichler, Ana Korosec, Andrea Vogel, Martina Kerndl, Dominika Hromadová, Laszlo Musiejovsky, Alexander Hajto, Anja Dobrijevic, Tina Piwonka, Arvand Haschemi, Anne Miller, Philippe Georgel, Darja Marolt Presen, Johannes Grillari, Silvia Hayer, Jean-Philippe Auger, Gerhard Krönke, Omar Sharif, Daniel Aletaha, Gernot Schabbauer, Stephan Blüml","doi":"10.1136/ard-2023-224898","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Bone remodelling is a highly dynamic process dependent on the precise coordination of osteoblasts and haematopoietic-cell derived osteoclasts. Changes in core metabolic pathways during osteoclastogenesis, however, are largely unexplored and it is unknown whether and how these processes are involved in bone homeostasis.</p><p><strong>Methods: </strong>We metabolically and transcriptionally profiled cells during osteoclast and osteoblast generation. Individual gene expression was characterised by quantitative PCR and western blot. Osteoblast function was assessed by Alizarin red staining. immunoresponsive gene 1 (<i>Irg1</i>)<i>-</i>deficient mice were used in various inflammatory or non-inflammatory models of bone loss. Tissue gene expression was analysed by RNA in situ hybridisation.</p><p><strong>Results: </strong>We show that during differentiation preosteoclasts rearrange their tricarboxylic acid cycle, a process crucially depending on both glucose and glutamine. This rearrangement is characterised by the induction of <i>Irg1</i> and production of itaconate, which accumulates intracellularly and extracellularly. While the IRG1-itaconate axis is dispensable for osteoclast generation in vitro and in vivo, we demonstrate that itaconate stimulates osteoblasts by accelerating osteogenic differentiation in both human and murine cells. This enhanced osteogenic differentiation is accompanied by reduced proliferation and altered metabolism. Additionally, supplementation of itaconate increases bone formation by boosting osteoblast activity in mice. Conversely, <i>Irg1-</i>deficient mice exhibit decreased bone mass and have reduced osteoproliferative lesions in experimental arthritis.</p><p><strong>Conclusion: </strong>In summary, we identify itaconate, generated as a result of the metabolic rewiring during osteoclast differentiation, as a previously unrecognised regulator of osteoblasts.</p>","PeriodicalId":8087,"journal":{"name":"Annals of the Rheumatic Diseases","volume":" ","pages":"1465-1479"},"PeriodicalIF":20.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503170/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Rheumatic Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/ard-2023-224898","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Bone remodelling is a highly dynamic process dependent on the precise coordination of osteoblasts and haematopoietic-cell derived osteoclasts. Changes in core metabolic pathways during osteoclastogenesis, however, are largely unexplored and it is unknown whether and how these processes are involved in bone homeostasis.

Methods: We metabolically and transcriptionally profiled cells during osteoclast and osteoblast generation. Individual gene expression was characterised by quantitative PCR and western blot. Osteoblast function was assessed by Alizarin red staining. immunoresponsive gene 1 (Irg1)-deficient mice were used in various inflammatory or non-inflammatory models of bone loss. Tissue gene expression was analysed by RNA in situ hybridisation.

Results: We show that during differentiation preosteoclasts rearrange their tricarboxylic acid cycle, a process crucially depending on both glucose and glutamine. This rearrangement is characterised by the induction of Irg1 and production of itaconate, which accumulates intracellularly and extracellularly. While the IRG1-itaconate axis is dispensable for osteoclast generation in vitro and in vivo, we demonstrate that itaconate stimulates osteoblasts by accelerating osteogenic differentiation in both human and murine cells. This enhanced osteogenic differentiation is accompanied by reduced proliferation and altered metabolism. Additionally, supplementation of itaconate increases bone formation by boosting osteoblast activity in mice. Conversely, Irg1-deficient mice exhibit decreased bone mass and have reduced osteoproliferative lesions in experimental arthritis.

Conclusion: In summary, we identify itaconate, generated as a result of the metabolic rewiring during osteoclast differentiation, as a previously unrecognised regulator of osteoblasts.

伊塔康酸是平衡和关节炎中骨形成的代谢调节剂。
目的:骨重塑是一个高度动态的过程,取决于成骨细胞和造血细胞衍生的破骨细胞之间的精确协调。然而,破骨细胞生成过程中核心代谢途径的变化在很大程度上尚未被探索,这些过程是否以及如何参与骨平衡也不得而知:我们对破骨细胞和成骨细胞生成过程中的细胞进行了代谢和转录分析。方法:我们对破骨细胞和成骨细胞生成过程中的细胞代谢和转录情况进行了分析。免疫反应基因 1(Irg1)缺陷小鼠被用于各种炎症性或非炎症性骨质流失模型。通过 RNA 原位杂交分析组织基因表达:结果:我们发现,在分化过程中,前破骨细胞会重新排列其三羧酸循环,这一过程主要依赖于葡萄糖和谷氨酰胺。这种重新排列的特点是诱导 Irg1 和产生伊塔康酸,伊塔康酸在细胞内和细胞外积累。IRG1-伊塔康酸轴对于体外和体内破骨细胞的生成都是不可或缺的,但我们证明,伊塔康酸通过加速人和小鼠细胞的成骨分化来刺激成骨细胞。这种成骨分化的增强伴随着增殖的减少和新陈代谢的改变。此外,在小鼠体内补充伊它康酸可提高成骨细胞的活性,从而增加骨形成。相反,Irg1缺陷小鼠的骨量下降,实验性关节炎的骨质增生病变减少:总之,我们发现在破骨细胞分化过程中因新陈代谢重构而产生的伊塔康酸是一种以前未被认识到的成骨细胞调节剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of the Rheumatic Diseases
Annals of the Rheumatic Diseases 医学-风湿病学
CiteScore
35.00
自引率
9.90%
发文量
3728
审稿时长
1.4 months
期刊介绍: Annals of the Rheumatic Diseases (ARD) is an international peer-reviewed journal covering all aspects of rheumatology, which includes the full spectrum of musculoskeletal conditions, arthritic disease, and connective tissue disorders. ARD publishes basic, clinical, and translational scientific research, including the most important recommendations for the management of various conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信