{"title":"TDOA and FDOA Hybrid Positioning of Mobile Radiation Source with Receiver Position Errors","authors":"Yue Zhang, Fen He, Honglei Zhang, Hongliang Yang, Zhengfeng Du, Zhu Xiao","doi":"10.1007/s11277-024-11387-7","DOIUrl":null,"url":null,"abstract":"<p>High-precision position awareness is essential to ubiquitous wireless networks, which can provide real-time position information and abundant status information for numerous practical applications. However, It is a challenge to obtain accurate position estimation utilizing traditional onefold parameter estimation, especially for the accurate position estimation of moving radiation source in the presence of receiver position errors. In this work, we developed an Improved Taylor Series estimation method in three-dimensional positioning scene, in which time difference of arrival (TDOA) and frequency difference of arrival (FDOA) are used to estimate the position and velocity of the target, and the position of the receiver is iteratively updated to reduce the influence of the receiver position errors. The closed-form expressions of Cramer–Rao low bound (CRLB) based on joint TDOA and FDOA positioning with receiver position errors are derived. In the simulation, CRLB with and without receiver position errors are evaluated to illustrate the influence of the receiver position errors on the positioning performance. Theory analysis and simulation results show that the proposed algorithm has lower complexity, smaller RMSE and better positioning performance than multidimensional scaling (W-MDS) algorithm, constrained total least squares algorithm and two-step weighted least squares algorithm for both near-field and far-field emitters.</p>","PeriodicalId":23827,"journal":{"name":"Wireless Personal Communications","volume":"51 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Personal Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11277-024-11387-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
High-precision position awareness is essential to ubiquitous wireless networks, which can provide real-time position information and abundant status information for numerous practical applications. However, It is a challenge to obtain accurate position estimation utilizing traditional onefold parameter estimation, especially for the accurate position estimation of moving radiation source in the presence of receiver position errors. In this work, we developed an Improved Taylor Series estimation method in three-dimensional positioning scene, in which time difference of arrival (TDOA) and frequency difference of arrival (FDOA) are used to estimate the position and velocity of the target, and the position of the receiver is iteratively updated to reduce the influence of the receiver position errors. The closed-form expressions of Cramer–Rao low bound (CRLB) based on joint TDOA and FDOA positioning with receiver position errors are derived. In the simulation, CRLB with and without receiver position errors are evaluated to illustrate the influence of the receiver position errors on the positioning performance. Theory analysis and simulation results show that the proposed algorithm has lower complexity, smaller RMSE and better positioning performance than multidimensional scaling (W-MDS) algorithm, constrained total least squares algorithm and two-step weighted least squares algorithm for both near-field and far-field emitters.
期刊介绍:
The Journal on Mobile Communication and Computing ...
Publishes tutorial, survey, and original research papers addressing mobile communications and computing;
Investigates theoretical, engineering, and experimental aspects of radio communications, voice, data, images, and multimedia;
Explores propagation, system models, speech and image coding, multiple access techniques, protocols, performance evaluation, radio local area networks, and networking and architectures, etc.;
98% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again.
Wireless Personal Communications is an archival, peer reviewed, scientific and technical journal addressing mobile communications and computing. It investigates theoretical, engineering, and experimental aspects of radio communications, voice, data, images, and multimedia. A partial list of topics included in the journal is: propagation, system models, speech and image coding, multiple access techniques, protocols performance evaluation, radio local area networks, and networking and architectures.
In addition to the above mentioned areas, the journal also accepts papers that deal with interdisciplinary aspects of wireless communications along with: big data and analytics, business and economy, society, and the environment.
The journal features five principal types of papers: full technical papers, short papers, technical aspects of policy and standardization, letters offering new research thoughts and experimental ideas, and invited papers on important and emerging topics authored by renowned experts.