Enhanced large-scale building extraction evaluation: developing a two-level framework using proxy data and building matching

IF 3.7 4区 地球科学 Q2 REMOTE SENSING
Shenglong Chen, Yoshiki Ogawa, Chenbo Zhao, Yoshihide Sekimoto
{"title":"Enhanced large-scale building extraction evaluation: developing a two-level framework using proxy data and building matching","authors":"Shenglong Chen, Yoshiki Ogawa, Chenbo Zhao, Yoshihide Sekimoto","doi":"10.1080/22797254.2024.2374844","DOIUrl":null,"url":null,"abstract":"Deep learning-based building extraction methods have widespread applications in diverse fields. However, the evaluation of large-scale extraction results remains challenging, due to traditional eva...","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/22797254.2024.2374844","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning-based building extraction methods have widespread applications in diverse fields. However, the evaluation of large-scale extraction results remains challenging, due to traditional eva...
强化大规模建筑物提取评估:利用代用数据和建筑物匹配开发两级框架
基于深度学习的建筑物提取方法已在多个领域得到广泛应用。然而,对大规模提取结果进行评估仍然具有挑战性,这是因为传统的评估方法无法对建筑物的提取结果进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
2.50%
发文量
51
审稿时长
>12 weeks
期刊介绍: European Journal of Remote Sensing publishes research papers and review articles related to the use of remote sensing technologies. The Journal welcomes submissions on all applications related to the use of active or passive remote sensing to terrestrial, oceanic, and atmospheric environments. The most common thematic areas covered by the Journal include: -land use/land cover -geology, earth and geoscience -agriculture and forestry -geography and landscape -ecology and environmental science -support to land management -hydrology and water resources -atmosphere and meteorology -oceanography -new sensor systems, missions and software/algorithms -pre processing/calibration -classifications -time series/change analysis -data integration/merging/fusion -image processing and analysis -modelling European Journal of Remote Sensing is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read anywhere, at any time, immediately on publication. There are no charges for submission to this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信