On 2-Killing vector fields in almost contact metric geometry

Pub Date : 2024-07-09 DOI:10.1007/s10998-024-00603-3
Adara M. Blaga, Cihan Özgür
{"title":"On 2-Killing vector fields in almost contact metric geometry","authors":"Adara M. Blaga, Cihan Özgür","doi":"10.1007/s10998-024-00603-3","DOIUrl":null,"url":null,"abstract":"<p>We characterize a 2-Killing Reeb vector field of a contact metric manifold, we describe the 2-Killing vector fields pointwise collinear with the Reeb vector field of the structure, and we study them in the general Riemannian case. On the other hand, we obtain some properties when the Reeb vector field is 2-Killing and the manifold is a Ricci soliton, a Yamabe soliton, a hyperbolic Ricci soliton, or a hyperbolic Yamabe soliton with potential vector field pointwise collinear with the Reeb vector field of the structure.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00603-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We characterize a 2-Killing Reeb vector field of a contact metric manifold, we describe the 2-Killing vector fields pointwise collinear with the Reeb vector field of the structure, and we study them in the general Riemannian case. On the other hand, we obtain some properties when the Reeb vector field is 2-Killing and the manifold is a Ricci soliton, a Yamabe soliton, a hyperbolic Ricci soliton, or a hyperbolic Yamabe soliton with potential vector field pointwise collinear with the Reeb vector field of the structure.

分享
查看原文
论几乎接触计量几何中的 2 Killing 向量场
我们描述了接触度量流形的 2Killing 里布矢量场的特征,描述了与该结构的里布矢量场点对齐的 2Killing 矢量场,并在一般黎曼情况下对它们进行了研究。另一方面,当Reeb向量场是2-Killing向量场,而流形是Ricci孤子、Yamabe孤子、双曲Ricci孤子或双曲Yamabe孤子,其势能向量场与结构的Reeb向量场点对齐时,我们得到了一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信