A Generalization of Ando’s Dilation, and Isometric Dilations for a Class of Tuples of q-Commuting Contractions

Pub Date : 2024-07-10 DOI:10.1007/s11785-024-01551-z
Sibaprasad Barik, Bappa Bisai
{"title":"A Generalization of Ando’s Dilation, and Isometric Dilations for a Class of Tuples of q-Commuting Contractions","authors":"Sibaprasad Barik, Bappa Bisai","doi":"10.1007/s11785-024-01551-z","DOIUrl":null,"url":null,"abstract":"<p>Given a bounded operator <i>Q</i> on a Hilbert space <span>\\(\\mathcal {H}\\)</span>, a pair of bounded operators <span>\\((T_1,T_2)\\)</span> on <span>\\(\\mathcal {H}\\)</span> is said to be <i>Q</i>-commuting if one of the following holds: </p><span>$$\\begin{aligned} T_1T_2=QT_2T_1 \\text { or }T_1T_2=T_2QT_1 \\text { or }T_1T_2=T_2T_1Q. \\end{aligned}$$</span><p>We give an explicit construction of isometric dilations for pairs of <i>Q</i>-commuting contractions for unitary <i>Q</i>, which generalizes the isometric dilation of Ando (Acta Sci Math (Szeged) 24:88–90, 1963) for pairs of commuting contractions. In particular, for <span>\\(Q=qI_{\\mathcal {H}}\\)</span>, where <i>q</i> is a complex number of modulus 1, this gives, as a corollary, an explicit construction of isometric dilations for pairs of <i>q</i>-commuting contractions, which are well studied. There is an extended notion of <i>q</i>-commutativity for general tuples of operators and it is known that isometric dilation does not hold, in general, for an <i>n</i>-tuple of <i>q</i>-commuting contractions, where <span>\\(n\\ge 3\\)</span>. Generalizing the class of commuting contractions considered by Brehmer (Acta Sci Math (Szeged) 22:106–111, 1961), we construct a class of <i>n</i>-tuples of <i>q</i>-commuting contractions and find isometric dilations explicitly for the class.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01551-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a bounded operator Q on a Hilbert space \(\mathcal {H}\), a pair of bounded operators \((T_1,T_2)\) on \(\mathcal {H}\) is said to be Q-commuting if one of the following holds:

$$\begin{aligned} T_1T_2=QT_2T_1 \text { or }T_1T_2=T_2QT_1 \text { or }T_1T_2=T_2T_1Q. \end{aligned}$$

We give an explicit construction of isometric dilations for pairs of Q-commuting contractions for unitary Q, which generalizes the isometric dilation of Ando (Acta Sci Math (Szeged) 24:88–90, 1963) for pairs of commuting contractions. In particular, for \(Q=qI_{\mathcal {H}}\), where q is a complex number of modulus 1, this gives, as a corollary, an explicit construction of isometric dilations for pairs of q-commuting contractions, which are well studied. There is an extended notion of q-commutativity for general tuples of operators and it is known that isometric dilation does not hold, in general, for an n-tuple of q-commuting contractions, where \(n\ge 3\). Generalizing the class of commuting contractions considered by Brehmer (Acta Sci Math (Szeged) 22:106–111, 1961), we construct a class of n-tuples of q-commuting contractions and find isometric dilations explicitly for the class.

分享
查看原文
安藤扩张的一般化,以及一类 q 对等收缩元组的等距扩张
给定一个希尔伯特空间(Hilbert space)上的有界算子 Q,如果以下条件之一成立,则称(Hilbert space)上的一对有界算子((T_1,T_2))为 Q-commuting: $$\begin{aligned}.T_1T_2=QT_2T_1 (text { 或 }T_1T_2=T_2QT_1 (text { 或 }T_1T_2=T_2T_1Q.\end{aligned}$$We give an explicit construction of isometric dilations for pairs of Q-commuting contractions for unitary Q, which generalizes the isometric dilation of Ando (Acta Sci Math (Szeged) 24:88-90, 1963) for pairs of commuting contractions.特别是,对于 q 为模数 1 的复数的 \(Q=qI_{/mathcal{H}}/),作为一个推论,这给出了对 q 换约收缩的等距扩张的显式构造,这一点研究得很透彻。对于一般的算子元组,有一个扩展的 q-commutativity 概念,而且众所周知,对于 q-commuting contractions 的 n 个元组(其中 \(n\ge 3\) ),等距扩张一般不成立。从布雷默(Acta Sci Math (Szeged) 22:106-111,1961)考虑的换元收缩类出发,我们构造了一类 n 元组 q 换元收缩,并明确地发现了该类的等距扩张。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信