{"title":"A Generalization of Ando’s Dilation, and Isometric Dilations for a Class of Tuples of q-Commuting Contractions","authors":"Sibaprasad Barik, Bappa Bisai","doi":"10.1007/s11785-024-01551-z","DOIUrl":null,"url":null,"abstract":"<p>Given a bounded operator <i>Q</i> on a Hilbert space <span>\\(\\mathcal {H}\\)</span>, a pair of bounded operators <span>\\((T_1,T_2)\\)</span> on <span>\\(\\mathcal {H}\\)</span> is said to be <i>Q</i>-commuting if one of the following holds: </p><span>$$\\begin{aligned} T_1T_2=QT_2T_1 \\text { or }T_1T_2=T_2QT_1 \\text { or }T_1T_2=T_2T_1Q. \\end{aligned}$$</span><p>We give an explicit construction of isometric dilations for pairs of <i>Q</i>-commuting contractions for unitary <i>Q</i>, which generalizes the isometric dilation of Ando (Acta Sci Math (Szeged) 24:88–90, 1963) for pairs of commuting contractions. In particular, for <span>\\(Q=qI_{\\mathcal {H}}\\)</span>, where <i>q</i> is a complex number of modulus 1, this gives, as a corollary, an explicit construction of isometric dilations for pairs of <i>q</i>-commuting contractions, which are well studied. There is an extended notion of <i>q</i>-commutativity for general tuples of operators and it is known that isometric dilation does not hold, in general, for an <i>n</i>-tuple of <i>q</i>-commuting contractions, where <span>\\(n\\ge 3\\)</span>. Generalizing the class of commuting contractions considered by Brehmer (Acta Sci Math (Szeged) 22:106–111, 1961), we construct a class of <i>n</i>-tuples of <i>q</i>-commuting contractions and find isometric dilations explicitly for the class.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01551-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given a bounded operator Q on a Hilbert space \(\mathcal {H}\), a pair of bounded operators \((T_1,T_2)\) on \(\mathcal {H}\) is said to be Q-commuting if one of the following holds:
$$\begin{aligned} T_1T_2=QT_2T_1 \text { or }T_1T_2=T_2QT_1 \text { or }T_1T_2=T_2T_1Q. \end{aligned}$$
We give an explicit construction of isometric dilations for pairs of Q-commuting contractions for unitary Q, which generalizes the isometric dilation of Ando (Acta Sci Math (Szeged) 24:88–90, 1963) for pairs of commuting contractions. In particular, for \(Q=qI_{\mathcal {H}}\), where q is a complex number of modulus 1, this gives, as a corollary, an explicit construction of isometric dilations for pairs of q-commuting contractions, which are well studied. There is an extended notion of q-commutativity for general tuples of operators and it is known that isometric dilation does not hold, in general, for an n-tuple of q-commuting contractions, where \(n\ge 3\). Generalizing the class of commuting contractions considered by Brehmer (Acta Sci Math (Szeged) 22:106–111, 1961), we construct a class of n-tuples of q-commuting contractions and find isometric dilations explicitly for the class.
给定一个希尔伯特空间(Hilbert space)上的有界算子 Q,如果以下条件之一成立,则称(Hilbert space)上的一对有界算子((T_1,T_2))为 Q-commuting: $$\begin{aligned}.T_1T_2=QT_2T_1 (text { 或 }T_1T_2=T_2QT_1 (text { 或 }T_1T_2=T_2T_1Q.\end{aligned}$$We give an explicit construction of isometric dilations for pairs of Q-commuting contractions for unitary Q, which generalizes the isometric dilation of Ando (Acta Sci Math (Szeged) 24:88-90, 1963) for pairs of commuting contractions.特别是,对于 q 为模数 1 的复数的 \(Q=qI_{/mathcal{H}}/),作为一个推论,这给出了对 q 换约收缩的等距扩张的显式构造,这一点研究得很透彻。对于一般的算子元组,有一个扩展的 q-commutativity 概念,而且众所周知,对于 q-commuting contractions 的 n 个元组(其中 \(n\ge 3\) ),等距扩张一般不成立。从布雷默(Acta Sci Math (Szeged) 22:106-111,1961)考虑的换元收缩类出发,我们构造了一类 n 元组 q 换元收缩,并明确地发现了该类的等距扩张。