{"title":"Generalized threshold of longitudinal multibunch instability in synchrotrons","authors":"Ivan Karpov, Elena Shaposhnikova","doi":"10.1103/physrevaccelbeams.27.074401","DOIUrl":null,"url":null,"abstract":"Beam stability is a crucial requirement for all particle accelerators. Coupled-bunch instability (CBI) is driven by beam interaction with narrowband impedance of the resonant accelerator components. Loss of Landau damping (LLD) for a single bunch is mainly determined by broadband impedance and can lead to undamped bunch oscillations. For the first time, we solve numerically the longitudinal stability problem in a self-consistent way for a general case of two impedance types and propose a simple analytical criterion describing how the obtained LLD and CBI thresholds are combined. We demonstrate that LLD can modify the CBI mechanism and reduce the instability threshold even below the LLD threshold. These findings allow the existing beam observations in CERN Super Proton Synchrotron and Large Hadron Collider to be explained and should be considered in design of the future accelerators.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"150 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.074401","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Beam stability is a crucial requirement for all particle accelerators. Coupled-bunch instability (CBI) is driven by beam interaction with narrowband impedance of the resonant accelerator components. Loss of Landau damping (LLD) for a single bunch is mainly determined by broadband impedance and can lead to undamped bunch oscillations. For the first time, we solve numerically the longitudinal stability problem in a self-consistent way for a general case of two impedance types and propose a simple analytical criterion describing how the obtained LLD and CBI thresholds are combined. We demonstrate that LLD can modify the CBI mechanism and reduce the instability threshold even below the LLD threshold. These findings allow the existing beam observations in CERN Super Proton Synchrotron and Large Hadron Collider to be explained and should be considered in design of the future accelerators.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.