Phosphorus recovery from municipal sludge-derived ash: influence of incineration temperature and heavy metal ion on ash mineralogy

IF 2.7 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Changzi Guo, Wanqin Zhao, Yi Han, Xuli Zhang
{"title":"Phosphorus recovery from municipal sludge-derived ash: influence of incineration temperature and heavy metal ion on ash mineralogy","authors":"Changzi Guo,&nbsp;Wanqin Zhao,&nbsp;Yi Han,&nbsp;Xuli Zhang","doi":"10.1007/s10163-024-02023-4","DOIUrl":null,"url":null,"abstract":"<div><p>With the implementation of the “carbon neutrality” strategy, waste resource-utilization technologies have become the focus of future research. P recovery from excess sludge (ES) is of great significance. In this paper, P recovery in excess sludge ash (ESA) of different incineration temperatures was studied. The experiment results showed that the optimal incineration temperature of ESA was 750 °C, and its total phosphorus content was 90.7 mg/g, which were three times heavier than the original sludge. As the incineration temperature increased from 650 °C to 850 °C, the more crystals appeared to be agglomerated and there was melting phenomenon on the surface of ESA. Higher temperatures were conducive to the AIP formation. The new minerals such as Ca<sub>4</sub>(Mg.Fe)<sub>5</sub>(PO4)<sub>6</sub> and (Ca.Mg)<sub>3</sub>(PO4)<sub>2</sub> were produced in ESA of 800 °C and 850 °C. Under the optimal acid-leaching conditions that were leaching time of 90 min, liquid–solid ratio of 50:1 (mL/g), and sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) concentration of 1 M, P leaching efficiencies could reach 100% in ESA of 700 °C and 750 °C, where P leaching contents were the most abundant and more suitable for P recovery. The research results provided theoretical basis and operational conditions for P recovery of excess sludge.</p></div>","PeriodicalId":643,"journal":{"name":"Journal of Material Cycles and Waste Management","volume":"26 5","pages":"3024 - 3033"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10163-024-02023-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Cycles and Waste Management","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10163-024-02023-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

With the implementation of the “carbon neutrality” strategy, waste resource-utilization technologies have become the focus of future research. P recovery from excess sludge (ES) is of great significance. In this paper, P recovery in excess sludge ash (ESA) of different incineration temperatures was studied. The experiment results showed that the optimal incineration temperature of ESA was 750 °C, and its total phosphorus content was 90.7 mg/g, which were three times heavier than the original sludge. As the incineration temperature increased from 650 °C to 850 °C, the more crystals appeared to be agglomerated and there was melting phenomenon on the surface of ESA. Higher temperatures were conducive to the AIP formation. The new minerals such as Ca4(Mg.Fe)5(PO4)6 and (Ca.Mg)3(PO4)2 were produced in ESA of 800 °C and 850 °C. Under the optimal acid-leaching conditions that were leaching time of 90 min, liquid–solid ratio of 50:1 (mL/g), and sulfuric acid (H2SO4) concentration of 1 M, P leaching efficiencies could reach 100% in ESA of 700 °C and 750 °C, where P leaching contents were the most abundant and more suitable for P recovery. The research results provided theoretical basis and operational conditions for P recovery of excess sludge.

Abstract Image

从城市污泥衍生灰烬中回收磷:焚烧温度和重金属离子对灰烬矿物学的影响
随着 "碳中和 "战略的实施,废物资源化技术已成为未来研究的重点。从过量污泥(ES)中回收P具有重要意义。本文研究了不同焚烧温度下过剩污泥灰(ESA)中 P 的回收情况。实验结果表明,ESA 的最佳焚烧温度为 750 ℃,其总磷含量为 90.7 mg/g,是原污泥的 3 倍。随着焚烧温度从 650 ℃ 升高到 850 ℃,ESA 的结晶体越聚越多,表面出现熔化现象。更高的温度有利于 AIP 的形成。在 800 °C和 850 °C的ESA中产生了新矿物,如Ca4(Mg.Fe)5(PO4)6和(Ca.Mg)3(PO4)2。在浸出时间为 90 min、液固比为 50:1 (mL/g) 和硫酸(H2SO4)浓度为 1 M 的最佳酸浸条件下,700 ℃ 和 750 ℃ 的 ESA 中 P 浸出效率可达 100%,其中 P 浸出含量最高,更适于 P 的回收。该研究成果为过量污泥的磷回收提供了理论依据和操作条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
16.10%
发文量
205
审稿时长
4.8 months
期刊介绍: The Journal of Material Cycles and Waste Management has a twofold focus: research in technical, political, and environmental problems of material cycles and waste management; and information that contributes to the development of an interdisciplinary science of material cycles and waste management. Its aim is to develop solutions and prescriptions for material cycles. The journal publishes original articles, reviews, and invited papers from a wide range of disciplines related to material cycles and waste management. The journal is published in cooperation with the Japan Society of Material Cycles and Waste Management (JSMCWM) and the Korea Society of Waste Management (KSWM).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信