Jai Bardhan, Tanumoy Mandal, Subhadip Mitra, Cyrin Neeraj, Monalisa Patra
{"title":"Unsupervised and lightly supervised learning in particle physics","authors":"Jai Bardhan, Tanumoy Mandal, Subhadip Mitra, Cyrin Neeraj, Monalisa Patra","doi":"10.1140/epjs/s11734-024-01235-x","DOIUrl":null,"url":null,"abstract":"<p>We review the main applications of machine learning models that are not fully supervised in particle physics, i.e., clustering, anomaly detection, detector simulation, and unfolding. Unsupervised methods are ideal for anomaly detection tasks—machine learning models can be trained on background data to identify deviations if we model the background data precisely. The learning can also be partially unsupervised when we can provide some information about the anomalies at the data level. Generative models are useful in speeding up detector simulations—they can mimic the computationally intensive task without large resources. They can also efficiently map detector-level data to parton-level data (i.e., data unfolding). In this review, we focus on interesting ideas and connections and briefly overview the underlying techniques wherever necessary.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01235-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We review the main applications of machine learning models that are not fully supervised in particle physics, i.e., clustering, anomaly detection, detector simulation, and unfolding. Unsupervised methods are ideal for anomaly detection tasks—machine learning models can be trained on background data to identify deviations if we model the background data precisely. The learning can also be partially unsupervised when we can provide some information about the anomalies at the data level. Generative models are useful in speeding up detector simulations—they can mimic the computationally intensive task without large resources. They can also efficiently map detector-level data to parton-level data (i.e., data unfolding). In this review, we focus on interesting ideas and connections and briefly overview the underlying techniques wherever necessary.