On the Dynamic Tension of a Thin Round Perfectly Rigid-Plastic Layer Made of Transversely Isotropic Material

Pub Date : 2024-07-08 DOI:10.1134/s0012266124030078
I. M. Tsvetkov
{"title":"On the Dynamic Tension of a Thin Round Perfectly Rigid-Plastic Layer Made of Transversely Isotropic Material","authors":"I. M. Tsvetkov","doi":"10.1134/s0012266124030078","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study a system of equations modeling the dynamic tension of a homogeneous round\nlayer of incompressible perfectly rigid-plastic transversely isotropic material obeying the\nMises–Hencky criterion. The upper and lower bases are stress-free, the radial velocity is set on the\nlateral boundary, and the possibility of thickening or thinning of the layer, simulating formation\nand further development of a neck, is taken into account. Using the method of asymptotic\nintegration, two characteristic tension modes are identified, that is, relations of dimensionless\nparameters are determined that necessitate taking into account inertial terms. An approximate\nsolution of the problem is constructed when considering the mode associated with the acceleration\non the lateral face reaching its critical values.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124030078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a system of equations modeling the dynamic tension of a homogeneous round layer of incompressible perfectly rigid-plastic transversely isotropic material obeying the Mises–Hencky criterion. The upper and lower bases are stress-free, the radial velocity is set on the lateral boundary, and the possibility of thickening or thinning of the layer, simulating formation and further development of a neck, is taken into account. Using the method of asymptotic integration, two characteristic tension modes are identified, that is, relations of dimensionless parameters are determined that necessitate taking into account inertial terms. An approximate solution of the problem is constructed when considering the mode associated with the acceleration on the lateral face reaching its critical values.

分享
查看原文
论横向各向同性材料薄圆完全刚塑层的动态张力
摘要 我们研究了一个方程组,该方程组模拟了服从米塞斯-亨茨基准则的不可压缩完全刚塑横向各向同性材料均匀圆层的动态张力。上下基面无应力,径向速度设置在侧边界上,并考虑了层增厚或减薄的可能性,模拟了颈部的形成和进一步发展。利用渐近积分法确定了两种特征张力模式,即确定了需要考虑惯性项的无量纲参数关系。在考虑与侧面加速度达到临界值相关的模式时,构建了问题的近似解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信