On the Solvability of Initial and Boundary Value Problems for Abstract Functional-Differential Euler–Poisson–Darboux Equations

Pub Date : 2024-07-08 DOI:10.1134/s0012266124030054
A. V. Glushak
{"title":"On the Solvability of Initial and Boundary Value Problems for Abstract Functional-Differential Euler–Poisson–Darboux Equations","authors":"A. V. Glushak","doi":"10.1134/s0012266124030054","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> In a Banach space, we consider the Cauchy problem and the Dirichlet and Neumann\nboundary value problems for a functional-differential equation generalizing the\nEuler–Poisson–Darboux equation. A sufficient condition for the solvability of the Cauchy problem\nis proved, and an explicit form of the resolving operator is indicated, which is written using the\nBessel and Struve operator functions introduced by the author. For boundary value problems in\nthe hyperbolic case, we establish conditions imposed on the operator coefficient of the equation\nand the boundary elements that are sufficient for the unique solvability of these problems.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124030054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a Banach space, we consider the Cauchy problem and the Dirichlet and Neumann boundary value problems for a functional-differential equation generalizing the Euler–Poisson–Darboux equation. A sufficient condition for the solvability of the Cauchy problem is proved, and an explicit form of the resolving operator is indicated, which is written using the Bessel and Struve operator functions introduced by the author. For boundary value problems in the hyperbolic case, we establish conditions imposed on the operator coefficient of the equation and the boundary elements that are sufficient for the unique solvability of these problems.

分享
查看原文
论抽象函数微分欧拉-泊松-达布方程的初值和边界问题的可解性
摘要 在巴拿赫空间中,我们考虑了泛化欧拉-泊松-达尔布方程的函数微分方程的考希问题和狄利克特与诺伊曼边界值问题。证明了 Cauchy 问题可解性的充分条件,并指出了解析算子的明确形式,该形式是用作者引入的贝塞尔和斯特鲁夫算子函数写成的。对于双曲情况下的边界值问题,我们建立了施加于方程的算子系数和边界元素的条件,这些条件足以保证这些问题的唯一可解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信