On the Solvability of a Periodic Problem for a System of Second-Order Nonlinear Ordinary Differential Equations

Pub Date : 2024-07-08 DOI:10.1134/s0012266124030030
E. Mukhamadiev, A. N. Naimov
{"title":"On the Solvability of a Periodic Problem for a System of Second-Order Nonlinear Ordinary Differential Equations","authors":"E. Mukhamadiev, A. N. Naimov","doi":"10.1134/s0012266124030030","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> The solvability of a periodic problem for a system of nonlinear second-order ordinary\ndifferential equations with a positively homogeneous main part is investigated. New conditions are\nfound that ensure an a priori estimate for the solutions of the periodic problem under\nconsideration. The conditions are stated in terms of the properties of the positively homogeneous\nmain part of the system. Under the a priori estimate, using and developing methods for calculating\nthe mapping degree for vector fields, we prove a theorem on the solvability of the periodic problem\nthat generalizes the results previously obtained by the present authors on the study of the periodic\nproblem for systems of second-order nonlinear ordinary differential equations.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124030030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The solvability of a periodic problem for a system of nonlinear second-order ordinary differential equations with a positively homogeneous main part is investigated. New conditions are found that ensure an a priori estimate for the solutions of the periodic problem under consideration. The conditions are stated in terms of the properties of the positively homogeneous main part of the system. Under the a priori estimate, using and developing methods for calculating the mapping degree for vector fields, we prove a theorem on the solvability of the periodic problem that generalizes the results previously obtained by the present authors on the study of the periodic problem for systems of second-order nonlinear ordinary differential equations.

分享
查看原文
论二阶非线性常微分方程系统周期问题的可解性
摘要 研究了具有正均质主要部分的非线性二阶常微分方程系统的周期问题的可解性。研究发现了新的条件,这些条件可确保对所考虑的周期性问题的解进行先验估计。这些条件是根据系统正均质主部的性质提出的。在先验估计条件下,利用并发展了计算向量场映射度的方法,我们证明了周期问题的可解性定理,该定理概括了本文作者之前在二阶非线性常微分方程系统的周期问题研究中获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信