Invariants of Geodesic, Potential, and Dissipative Systems with Three Degrees of Freedom

Pub Date : 2024-07-08 DOI:10.1134/s0012266124030042
M. V. Shamolin
{"title":"Invariants of Geodesic, Potential, and Dissipative Systems with Three Degrees of Freedom","authors":"M. V. Shamolin","doi":"10.1134/s0012266124030042","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> Tensor invariants (first integrals and differential forms) of homogeneous dynamical systems\non the tangent bundles of smooth three-dimensional manifolds (systems with three degrees of\nfreedom) are presented in this paper. The connection between the presence of such invariants and\nthe complete set of the first integrals needed for the integration of geodesic, potential, and\ndissipative systems is shown. At the same time, the force fields introduced make the systems in\nquestion dissipative with dissipation of different signs and generalize the previously considered\nones.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124030042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor invariants (first integrals and differential forms) of homogeneous dynamical systems on the tangent bundles of smooth three-dimensional manifolds (systems with three degrees of freedom) are presented in this paper. The connection between the presence of such invariants and the complete set of the first integrals needed for the integration of geodesic, potential, and dissipative systems is shown. At the same time, the force fields introduced make the systems in question dissipative with dissipation of different signs and generalize the previously considered ones.

分享
查看原文
具有三个自由度的大地、势和耗散系统的不变式
摘要 本文介绍了光滑三维流形切线束上的均相动力系统(具有三个自由度的系统)的张量不变量(第一积分和微分形式)。本文说明了这些不变量的存在与测地、势和耗散系统积分所需的全套第一次积分之间的联系。同时,引入的力场使问题中的系统具有不同符号的耗散,并对之前考虑的系统进行了扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信