Advanced Financial Fraud Detection Using GNN-CL Model

Yu Cheng, Junjie Guo, Shiqing Long, You Wu, Mengfang Sun, Rong Zhang
{"title":"Advanced Financial Fraud Detection Using GNN-CL Model","authors":"Yu Cheng, Junjie Guo, Shiqing Long, You Wu, Mengfang Sun, Rong Zhang","doi":"arxiv-2407.06529","DOIUrl":null,"url":null,"abstract":"The innovative GNN-CL model proposed in this paper marks a breakthrough in\nthe field of financial fraud detection by synergistically combining the\nadvantages of graph neural networks (gnn), convolutional neural networks (cnn)\nand long short-term memory (LSTM) networks. This convergence enables\nmultifaceted analysis of complex transaction patterns, improving detection\naccuracy and resilience against complex fraudulent activities. A key novelty of\nthis paper is the use of multilayer perceptrons (MLPS) to estimate node\nsimilarity, effectively filtering out neighborhood noise that can lead to false\npositives. This intelligent purification mechanism ensures that only the most\nrelevant information is considered, thereby improving the model's understanding\nof the network structure. Feature weakening often plagues graph-based models\ndue to the dilution of key signals. In order to further address the challenge\nof feature weakening, GNN-CL adopts reinforcement learning strategies. By\ndynamically adjusting the weights assigned to central nodes, it reinforces the\nimportance of these influential entities to retain important clues of fraud\neven in less informative data. Experimental evaluations on Yelp datasets show\nthat the results highlight the superior performance of GNN-CL compared to\nexisting methods.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The innovative GNN-CL model proposed in this paper marks a breakthrough in the field of financial fraud detection by synergistically combining the advantages of graph neural networks (gnn), convolutional neural networks (cnn) and long short-term memory (LSTM) networks. This convergence enables multifaceted analysis of complex transaction patterns, improving detection accuracy and resilience against complex fraudulent activities. A key novelty of this paper is the use of multilayer perceptrons (MLPS) to estimate node similarity, effectively filtering out neighborhood noise that can lead to false positives. This intelligent purification mechanism ensures that only the most relevant information is considered, thereby improving the model's understanding of the network structure. Feature weakening often plagues graph-based models due to the dilution of key signals. In order to further address the challenge of feature weakening, GNN-CL adopts reinforcement learning strategies. By dynamically adjusting the weights assigned to central nodes, it reinforces the importance of these influential entities to retain important clues of fraud even in less informative data. Experimental evaluations on Yelp datasets show that the results highlight the superior performance of GNN-CL compared to existing methods.
利用 GNN-CL 模型进行高级金融欺诈检测
本文提出的 GNN-CL 创新模型将图神经网络(gnn)、卷积神经网络(cnn)和长短期记忆(LSTM)网络的优势协同结合在一起,标志着金融欺诈检测领域的一项突破。这种融合能够对复杂的交易模式进行多方面分析,从而提高检测精度和抵御复杂欺诈活动的能力。本文的一个主要创新点是使用多层感知器(MLPS)来估计节点相似性,从而有效过滤掉可能导致误判的邻域噪声。这种智能净化机制确保只考虑最相关的信息,从而提高了模型对网络结构的理解。由于关键信号被稀释,基于图的模型经常受到特征弱化的困扰。为了进一步解决特征弱化的难题,GNN-CL 采用了强化学习策略。通过动态调整分配给中心节点的权重,它强化了这些有影响力实体的重要性,即使在信息量较少的数据中也能保留重要的欺诈线索。在 Yelp 数据集上的实验评估结果表明,与现有方法相比,GNN-CL 的性能更优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信