Equality Conditions for the Fractional Superadditive Volume Inequalities

Pub Date : 2024-07-05 DOI:10.1007/s00454-024-00672-8
Mark Meyer
{"title":"Equality Conditions for the Fractional Superadditive Volume Inequalities","authors":"Mark Meyer","doi":"10.1007/s00454-024-00672-8","DOIUrl":null,"url":null,"abstract":"<p>While studying set function properties of Lebesgue measure, F. Barthe and M. Madiman proved that Lebesgue measure is fractionally superadditive on compact sets in <span>\\(\\mathbb {R}^n\\)</span>. In doing this they proved a fractional generalization of the Brunn–Minkowski–Lyusternik (BML) inequality in dimension <span>\\(n=1\\)</span>. In this paper we will prove the equality conditions for the fractional superadditive volume inequalites for any dimension. The non-trivial equality conditions are as follows. In the one-dimensional case we will show that for a fractional partition <span>\\((\\mathcal {G},\\beta )\\)</span> and nonempty sets <span>\\(A_1,\\dots ,A_m\\subseteq \\mathbb {R}\\)</span>, equality holds iff for each <span>\\(S\\in \\mathcal {G}\\)</span>, the set <span>\\(\\sum _{i\\in S}A_i\\)</span> is an interval. In the case of dimension <span>\\(n\\ge 2\\)</span> we will show that equality can hold if and only if the set <span>\\(\\sum _{i=1}^{m}A_i\\)</span> has measure 0.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00672-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While studying set function properties of Lebesgue measure, F. Barthe and M. Madiman proved that Lebesgue measure is fractionally superadditive on compact sets in \(\mathbb {R}^n\). In doing this they proved a fractional generalization of the Brunn–Minkowski–Lyusternik (BML) inequality in dimension \(n=1\). In this paper we will prove the equality conditions for the fractional superadditive volume inequalites for any dimension. The non-trivial equality conditions are as follows. In the one-dimensional case we will show that for a fractional partition \((\mathcal {G},\beta )\) and nonempty sets \(A_1,\dots ,A_m\subseteq \mathbb {R}\), equality holds iff for each \(S\in \mathcal {G}\), the set \(\sum _{i\in S}A_i\) is an interval. In the case of dimension \(n\ge 2\) we will show that equality can hold if and only if the set \(\sum _{i=1}^{m}A_i\) has measure 0.

分享
查看原文
分数超容积不等式的相等条件
在研究 Lebesgue 测量的集合函数性质时,F. Barthe 和 M. Madiman 证明了 Lebesgue 测量在 \(\mathbb {R}^n\) 紧凑集合上是分数超正定的。为此,他们证明了维度 \(n=1\) 中布伦-明可夫斯基-柳斯特尼克(Brunn-Minkowski-Lyusternik,BML)不等式的分数广义化。在本文中,我们将证明任意维度的分数叠加体积不等式的相等条件。非难等式条件如下。在一维情况下,我们将证明对于分数分割 \((\mathcal {G},\beta )\)和非空集 \(A_1,\dots ,A_m\subseteq \mathbb {R}\),如果对于每个 \(S\in \mathcal {G}\),集 \(\sum _{i\in S}A_i\) 是一个区间,那么等式成立。在维数为\(nge 2\) 的情况下,我们将证明只有当且仅当集合\(\sum _{i=1}^{m}A_i\) 的度量为 0 时,相等才成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信