{"title":"Equality Conditions for the Fractional Superadditive Volume Inequalities","authors":"Mark Meyer","doi":"10.1007/s00454-024-00672-8","DOIUrl":null,"url":null,"abstract":"<p>While studying set function properties of Lebesgue measure, F. Barthe and M. Madiman proved that Lebesgue measure is fractionally superadditive on compact sets in <span>\\(\\mathbb {R}^n\\)</span>. In doing this they proved a fractional generalization of the Brunn–Minkowski–Lyusternik (BML) inequality in dimension <span>\\(n=1\\)</span>. In this paper we will prove the equality conditions for the fractional superadditive volume inequalites for any dimension. The non-trivial equality conditions are as follows. In the one-dimensional case we will show that for a fractional partition <span>\\((\\mathcal {G},\\beta )\\)</span> and nonempty sets <span>\\(A_1,\\dots ,A_m\\subseteq \\mathbb {R}\\)</span>, equality holds iff for each <span>\\(S\\in \\mathcal {G}\\)</span>, the set <span>\\(\\sum _{i\\in S}A_i\\)</span> is an interval. In the case of dimension <span>\\(n\\ge 2\\)</span> we will show that equality can hold if and only if the set <span>\\(\\sum _{i=1}^{m}A_i\\)</span> has measure 0.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00672-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
While studying set function properties of Lebesgue measure, F. Barthe and M. Madiman proved that Lebesgue measure is fractionally superadditive on compact sets in \(\mathbb {R}^n\). In doing this they proved a fractional generalization of the Brunn–Minkowski–Lyusternik (BML) inequality in dimension \(n=1\). In this paper we will prove the equality conditions for the fractional superadditive volume inequalites for any dimension. The non-trivial equality conditions are as follows. In the one-dimensional case we will show that for a fractional partition \((\mathcal {G},\beta )\) and nonempty sets \(A_1,\dots ,A_m\subseteq \mathbb {R}\), equality holds iff for each \(S\in \mathcal {G}\), the set \(\sum _{i\in S}A_i\) is an interval. In the case of dimension \(n\ge 2\) we will show that equality can hold if and only if the set \(\sum _{i=1}^{m}A_i\) has measure 0.