From Zygmund space to Bergman–Zygmund space

IF 1.1 2区 数学 Q1 MATHEMATICS
Hong Rae Cho, Hyungwoon Koo, Young Joo Lee
{"title":"From Zygmund space to Bergman–Zygmund space","authors":"Hong Rae Cho, Hyungwoon Koo, Young Joo Lee","doi":"10.1007/s43037-024-00369-3","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(0&lt;p&lt;\\infty , \\alpha &gt;-1,\\)</span> and <span>\\(\\beta ,\\gamma \\in {\\mathbb {R}}.\\)</span> Let <span>\\(\\mu \\)</span> be a finite positive Borel measure on the unit disk <span>\\({\\mathbb {D}}.\\)</span> The Zygmund space <span>\\(L^{p,\\beta }(d\\mu )\\)</span> consists of all measurable functions <i>f</i> on <span>\\({\\mathbb {D}}\\)</span> such that <span>\\(|f|^p\\log ^\\beta (e+|f|)\\in L^1(d\\mu )\\)</span> and the Bergman–Zygmund space <span>\\(A^{p,\\beta }_{\\alpha }\\)</span> is the set of all analytic functions in <span>\\(L^{p,\\beta }(dA_\\alpha ),\\)</span> where <span>\\(dA_\\alpha =c_\\alpha (1-|z|^2)^\\alpha dA.\\)</span> We prove an interpolation theorem for the Zygmund space assuming the weak type estimates on the Zygmund spaces themselves at the end points rather than the weak <span>\\(L^p-L^q\\)</span> type estimates at the end points. We show that the Bergman–Zygmund space is equal to the <span>\\(\\log ^\\beta (e/(1-|z|)) dA_\\alpha (z)\\)</span> weighted Bergman space as a set and characterize the bounded and compact Carleson measure <span>\\(\\mu \\)</span> from <span>\\(A^{p,\\beta }_{\\alpha }\\)</span> into <span>\\(A^{p,\\gamma }(d\\mu ),\\)</span> respectively. The Carleson measure characterizations are of the same type for any pairs of <span>\\((\\beta , \\gamma )\\)</span> whether <span>\\(\\beta &lt;\\gamma \\)</span> or <span>\\(\\gamma \\le \\beta .\\)</span></p>","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":"17 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00369-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(0<p<\infty , \alpha >-1,\) and \(\beta ,\gamma \in {\mathbb {R}}.\) Let \(\mu \) be a finite positive Borel measure on the unit disk \({\mathbb {D}}.\) The Zygmund space \(L^{p,\beta }(d\mu )\) consists of all measurable functions f on \({\mathbb {D}}\) such that \(|f|^p\log ^\beta (e+|f|)\in L^1(d\mu )\) and the Bergman–Zygmund space \(A^{p,\beta }_{\alpha }\) is the set of all analytic functions in \(L^{p,\beta }(dA_\alpha ),\) where \(dA_\alpha =c_\alpha (1-|z|^2)^\alpha dA.\) We prove an interpolation theorem for the Zygmund space assuming the weak type estimates on the Zygmund spaces themselves at the end points rather than the weak \(L^p-L^q\) type estimates at the end points. We show that the Bergman–Zygmund space is equal to the \(\log ^\beta (e/(1-|z|)) dA_\alpha (z)\) weighted Bergman space as a set and characterize the bounded and compact Carleson measure \(\mu \) from \(A^{p,\beta }_{\alpha }\) into \(A^{p,\gamma }(d\mu ),\) respectively. The Carleson measure characterizations are of the same type for any pairs of \((\beta , \gamma )\) whether \(\beta <\gamma \) or \(\gamma \le \beta .\)

从齐格蒙空间到伯格曼-齐格蒙空间
让(0<p<infty, \alpha>-1,)和(beta,gamma 在{/\mathbb {R}}. 让(d\mu )是单位盘({/\mathbb {D}}.\Zygmund 空间(L^{p,\beta }(d\mu )\) 包含所有在 \({\mathbb {D}}) 上的可测函数 f,使得 \(|f|^p\log ^\beta (e+|f|)\in L^1(d\mu )\) 和 Bergman-Zygmund 空间(A^{p、\是 \(L^{p,\beta }(dA_\alpha ),\) 中所有解析函数的集合,其中 \(dA_\alpha =c_\alpha (1-|z|^2)^\alpha dA.\)我们证明了Zygmund空间的插值定理,假定Zygmund空间本身在端点的弱类型估计,而不是在端点的弱\(L^p-L^q\)类型估计。我们证明了伯格曼-齐格蒙空间等于作为集合的 \(\log ^\beta (e/(1-|z|)) dA_\alpha (z)\) 加权伯格曼空间,并分别从 \(A^{p,\beta }_{\alpha }\) 到 \(A^{p,\gamma }(d\mu ),\) 描述了有界和紧凑的卡列森度量 \(\mu\) 。Carleson measure characterizations are of the same type for any pairs of \((\beta , \gamma )\) whether \(\beta <\gamma \) or \(\gamma \le \beta .\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
67
审稿时长
>12 weeks
期刊介绍: The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信