A quest for convergence: exploring series in non-linear environments

IF 0.5 4区 数学 Q3 MATHEMATICS
Geivison Ribeiro
{"title":"A quest for convergence: exploring series in non-linear environments","authors":"Geivison Ribeiro","doi":"10.1007/s00013-024-02022-9","DOIUrl":null,"url":null,"abstract":"<div><p>This note presents an extension of a result within the concept of <span>\\(\\left[ \\mathcal {S}\\right] \\)</span>-lineability, originally due to Bernal-González, Conejero, Murillo-Arcila, and Seoane-Sepúlveda. Additionally, we provide a characterization of lineability in the context of complements of unions of closed subspaces in <i>F</i>-spaces in terms of <span>\\(\\left[ \\ell _{\\infty }\\right] \\)</span>-lineability. We also present a negative result in both normed spaces and <i>p</i>-Banach spaces. These findings contribute to the understanding of linearity within exotic settings in vector spaces.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02022-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This note presents an extension of a result within the concept of \(\left[ \mathcal {S}\right] \)-lineability, originally due to Bernal-González, Conejero, Murillo-Arcila, and Seoane-Sepúlveda. Additionally, we provide a characterization of lineability in the context of complements of unions of closed subspaces in F-spaces in terms of \(\left[ \ell _{\infty }\right] \)-lineability. We also present a negative result in both normed spaces and p-Banach spaces. These findings contribute to the understanding of linearity within exotic settings in vector spaces.

追求趋同:探索非线性环境中的数列
本注释是对(\left[ \mathcal {S}\right] \)可线性概念中一个结果的扩展,这个结果最初是由贝纳尔-冈萨雷斯(Bernal-González)、科内赫罗(Conejero)、穆里略-阿西拉(Murillo-Arcila)和塞瓦内-塞普尔韦达(Seoane-Sepúlveda)提出的。此外,我们用 \(\left[ \ell _{\infty }\right] \)-可线性给出了可线性在 F 空间中封闭子空间联盟的补集上下文中的特征。我们还提出了规范空间和 p-Banach 空间的负结果。这些发现有助于理解向量空间中奇异设置下的线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信