{"title":"Gibbs measures for hardcore-solid-on-solid models on Cayley trees","authors":"Benedikt Jahnel and Utkir Rozikov","doi":"10.1088/1742-5468/ad5433","DOIUrl":null,"url":null,"abstract":"We investigate the finite-state p-solid-on-solid (p-SOS) model for on Cayley trees of order and establish a system of functional equations where each solution corresponds to a (splitting) Gibbs measure of the model. Our main result is that, for three states, and increasing coupling strength, the number of translation-invariant Gibbs measures behaves as . This phase diagram is qualitatively similar to the one observed for three-state p-SOS models with p > 0 and, in the case of k = 2, we demonstrate that, on the level of the functional equations, the transition is continuous.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"41 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad5433","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the finite-state p-solid-on-solid (p-SOS) model for on Cayley trees of order and establish a system of functional equations where each solution corresponds to a (splitting) Gibbs measure of the model. Our main result is that, for three states, and increasing coupling strength, the number of translation-invariant Gibbs measures behaves as . This phase diagram is qualitatively similar to the one observed for three-state p-SOS models with p > 0 and, in the case of k = 2, we demonstrate that, on the level of the functional equations, the transition is continuous.
期刊介绍:
JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged.
The journal covers different topics which correspond to the following keyword sections.
1. Quantum statistical physics, condensed matter, integrable systems
Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo
2. Classical statistical mechanics, equilibrium and non-equilibrium
Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo
3. Disordered systems, classical and quantum
Scientific Directors: Eduardo Fradkin and Riccardo Zecchina
4. Interdisciplinary statistical mechanics
Scientific Directors: Matteo Marsili and Riccardo Zecchina
5. Biological modelling and information
Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina