Leveraging large language model to generate a novel metaheuristic algorithm with CRISPE framework

Rui Zhong, Yuefeng Xu, Chao Zhang, Jun Yu
{"title":"Leveraging large language model to generate a novel metaheuristic algorithm with CRISPE framework","authors":"Rui Zhong, Yuefeng Xu, Chao Zhang, Jun Yu","doi":"10.1007/s10586-024-04654-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce the large language model (LLM) ChatGPT-3.5 to automatically and intelligently generate a new metaheuristic algorithm (MA) according to the standard prompt engineering framework CRISPE (i.e., Capacity and Role, Insight, Statement, Personality, and Experiment). The novel animal-inspired MA named Zoological Search Optimization (ZSO) draws inspiration from the collective behaviors of animals for solving continuous optimization problems. Specifically, the basic ZSO algorithm involves two search operators: the prey-predator interaction operator and the social flocking operator to balance exploration and exploitation well. Furthermore, we designed four variants of the ZSO algorithm with slight human-interacted adjustment. In numerical experiments, we comprehensively investigate the performance of ZSO-derived algorithms on CEC2014 benchmark functions, CEC2022 benchmark functions, and six engineering optimization problems. 20 popular and state-of-the-art MAs are employed as competitors. The experimental results and statistical analysis confirm the efficiency and effectiveness of ZSO-derived algorithms. At the end of this paper, we explore the prospects for the development of the metaheuristics community under the LLM era.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04654-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce the large language model (LLM) ChatGPT-3.5 to automatically and intelligently generate a new metaheuristic algorithm (MA) according to the standard prompt engineering framework CRISPE (i.e., Capacity and Role, Insight, Statement, Personality, and Experiment). The novel animal-inspired MA named Zoological Search Optimization (ZSO) draws inspiration from the collective behaviors of animals for solving continuous optimization problems. Specifically, the basic ZSO algorithm involves two search operators: the prey-predator interaction operator and the social flocking operator to balance exploration and exploitation well. Furthermore, we designed four variants of the ZSO algorithm with slight human-interacted adjustment. In numerical experiments, we comprehensively investigate the performance of ZSO-derived algorithms on CEC2014 benchmark functions, CEC2022 benchmark functions, and six engineering optimization problems. 20 popular and state-of-the-art MAs are employed as competitors. The experimental results and statistical analysis confirm the efficiency and effectiveness of ZSO-derived algorithms. At the end of this paper, we explore the prospects for the development of the metaheuristics community under the LLM era.

Abstract Image

借助 CRISPE 框架,利用大型语言模型生成新型元搜索算法
在本文中,我们引入了大型语言模型(LLM)ChatGPT-3.5,以根据标准提示工程框架 CRISPE(即能力与角色、洞察力、陈述、个性和实验)自动智能地生成一种新的元启发式算法(MA)。这种受动物启发而产生的新型求导算法被命名为 "动物搜索优化"(ZSO),它从动物解决连续优化问题的集体行为中汲取灵感。具体来说,基本的 ZSO 算法包含两个搜索算子:猎物-猎食者互动算子和社会成群算子,以很好地平衡探索和利用。此外,我们还设计了 ZSO 算法的四个变体,并在人为干预下进行了微调。在数值实验中,我们全面考察了 ZSO 衍生算法在 CEC2014 基准函数、CEC2022 基准函数和六个工程优化问题上的性能。作为竞争对手,我们采用了 20 种流行的先进 MA。实验结果和统计分析证实了 ZSO 衍生算法的效率和有效性。在本文的最后,我们探讨了在 LLM 时代元启发式算法界的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信