Global stability of three trophic levels predator–prey model with alarm-taxis

Qingshan Zhang, Chao Chen
{"title":"Global stability of three trophic levels predator–prey model with alarm-taxis","authors":"Qingshan Zhang, Chao Chen","doi":"10.1007/s00030-024-00978-9","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the three trophic levels predator–prey system with alarm-taxis </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{lll} u_{t}=d_{1} \\Delta u+u\\left( 1-u-\\frac{a v}{v+\\rho }\\right) , &amp;{} x \\in \\Omega , &amp;{} t&gt;0, \\\\ v_{t}=d_{2} \\Delta v+v\\left( \\frac{b u}{v+\\rho }-\\alpha -\\frac{c w}{w+\\sigma }\\right) , &amp;{} x \\in \\Omega , &amp;{} t&gt;0, \\\\ w_{t}=d_{3} \\Delta w-\\chi \\nabla \\cdot \\left( w\\nabla (uv)\\right) +w\\left( \\frac{m v}{w+\\sigma }-\\beta \\right) , &amp;{} x \\in \\Omega , &amp;{} t&gt;0 \\end{array}\\right. \\end{aligned}$$</span><p>under homogeneous Neumann boundary condition in smooth bounded domains <span>\\(\\Omega \\subset {\\mathbb {R}}^n (n\\ge 1)\\)</span>. We prove that the system possesses a unique global bounded classical solution for all sufficiently smooth initial data. Moreover, we show the large time behavior of the solution with convergence rates and perform some numerical simulations to verify the analytic results.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00978-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the three trophic levels predator–prey system with alarm-taxis

$$\begin{aligned} \left\{ \begin{array}{lll} u_{t}=d_{1} \Delta u+u\left( 1-u-\frac{a v}{v+\rho }\right) , &{} x \in \Omega , &{} t>0, \\ v_{t}=d_{2} \Delta v+v\left( \frac{b u}{v+\rho }-\alpha -\frac{c w}{w+\sigma }\right) , &{} x \in \Omega , &{} t>0, \\ w_{t}=d_{3} \Delta w-\chi \nabla \cdot \left( w\nabla (uv)\right) +w\left( \frac{m v}{w+\sigma }-\beta \right) , &{} x \in \Omega , &{} t>0 \end{array}\right. \end{aligned}$$

under homogeneous Neumann boundary condition in smooth bounded domains \(\Omega \subset {\mathbb {R}}^n (n\ge 1)\). We prove that the system possesses a unique global bounded classical solution for all sufficiently smooth initial data. Moreover, we show the large time behavior of the solution with convergence rates and perform some numerical simulations to verify the analytic results.

Abstract Image

带有警报-税率的三个营养级捕食者-猎物模型的全球稳定性
本文关注的是三个营养级的捕食者-猎物系统,该系统具有警报-税收 $$\begin{aligned}\u_{t}=d_{1}\Delta u+u\left( 1-u-frac{a v}{v+\rho }\right) , &{} x in \Omega , &{} t>0,\v_{t}=d_{2}\Delta v+v\left( \frac{b u}{v+\rho }-\alpha -\frac{c w}{w+\sigma }\right) , &{} x \in \Omega , &{} t>0,\ w_{t}=d_{3}\Delta w-\chi \nabla \cdot \left( w\nabla (uv)\right) +w\left( \frac{m v}{w+\sigma }-\beta \right) , &{} x \in \Omega , &{} t>0 \end{array}\right.\end{aligned}$$ under homogeneous Neumann boundary condition in smooth bounded domains \(\Omega \subset {\mathbb {R}}^n (n\ge 1)\)。我们证明,对于所有足够光滑的初始数据,该系统都有一个唯一的全局有界经典解。此外,我们还展示了具有收敛率的解的大时间行为,并进行了一些数值模拟来验证分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信