Smooth solutions in a three-dimensional chemotaxis-Stokes system involving Dirichlet boundary conditions for the signal

Yulan Wang, Michael Winkler, Zhaoyin Xiang
{"title":"Smooth solutions in a three-dimensional chemotaxis-Stokes system involving Dirichlet boundary conditions for the signal","authors":"Yulan Wang, Michael Winkler, Zhaoyin Xiang","doi":"10.1007/s00030-024-00982-z","DOIUrl":null,"url":null,"abstract":"<p>In a smoothly bounded domain <span>\\(\\Omega \\subset \\mathbb {R}^3\\)</span>, the chemotaxis-Stokes system </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{l} n_t + u\\cdot \\nabla n = \\Delta n - \\nabla \\cdot (n\\nabla c), \\\\ c_t + u\\cdot \\nabla c =\\Delta c - nc, \\\\ u_t = \\Delta u + \\nabla P + n\\nabla \\phi , \\qquad \\nabla \\cdot u =0 \\end{array} \\right. \\end{aligned}$$</span><p>is considered along with the boundary conditions </p><span>$$\\begin{aligned} \\big (\\nabla n - n\\nabla c\\big )\\cdot \\nu = 0, \\quad c=c_\\star , \\quad u=0, \\quad x\\in \\partial \\Omega , \\,\\, t&gt;0, \\end{aligned}$$</span><p>where <span>\\(c_\\star \\ge 0\\)</span> is a given constant. It is shown that under a smallness condition on <span>\\(c(\\cdot ,0)\\)</span> and suitable assumptions on regularity of the initial data, global classical solutions exist which are uniformly bounded.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00982-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a smoothly bounded domain \(\Omega \subset \mathbb {R}^3\), the chemotaxis-Stokes system

$$\begin{aligned} \left\{ \begin{array}{l} n_t + u\cdot \nabla n = \Delta n - \nabla \cdot (n\nabla c), \\ c_t + u\cdot \nabla c =\Delta c - nc, \\ u_t = \Delta u + \nabla P + n\nabla \phi , \qquad \nabla \cdot u =0 \end{array} \right. \end{aligned}$$

is considered along with the boundary conditions

$$\begin{aligned} \big (\nabla n - n\nabla c\big )\cdot \nu = 0, \quad c=c_\star , \quad u=0, \quad x\in \partial \Omega , \,\, t>0, \end{aligned}$$

where \(c_\star \ge 0\) is a given constant. It is shown that under a smallness condition on \(c(\cdot ,0)\) and suitable assumptions on regularity of the initial data, global classical solutions exist which are uniformly bounded.

涉及信号迪里希特边界条件的三维趋化-斯托克斯系统中的平滑解
在平滑有界域(Omega 子集)中,化合-斯托克斯系统 $$begin{aligned}(开始{aligned})。\n_t + u\cdot \nabla n = \Delta n - \nabla \cdot (n\nabla c)、\\ c_t + u\cdot \nabla c =\Delta c - nc, \ u_t = \Delta u + \nabla P + n\nabla \phi , \qquad \nabla \cdot u =0 \end{array}.\(right.\end{aligned}$$与边界条件$$\begin{aligned}一起考虑\big (\nabla n - n\nabla c\big )\cdot \nu = 0, \quad c=c\star , \quad u=0, \quad x\in \partial \Omega , \,\, t>0, \end{aligned}$ 其中\(c_\star \ge 0\) 是一个给定的常数。研究表明,在 \(c(\cdot ,0)\)的微小性条件和初始数据正则性的适当假设下,存在均匀有界的全局经典解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信