Md Raseduzzaman, Wenxu Dong, Gokul Gaudel, Stephen Okoth Aluoch, Arbindra Timilsina, Xiaoxin Li, Chunsheng Hu
{"title":"Maize-soybean intercropping reduces greenhouse gas emissions from the fertilized soil in the North China Plain","authors":"Md Raseduzzaman, Wenxu Dong, Gokul Gaudel, Stephen Okoth Aluoch, Arbindra Timilsina, Xiaoxin Li, Chunsheng Hu","doi":"10.1007/s11368-024-03859-x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and Aim</h3><p>Continuous monocropping with high nitrogen (N) fertilizer input substantially increases greenhouse gas (GHG) emissions in maize-based agroecosystems in the North China Plain (NCP). Introducing soybeans as an intercrop with maize and partially substituting urea with manure might effectively decrease GHG emissions. The aim of this study was to quantify the synergistic effect of maize-soybean intercropping and manure on soil GHG emissions.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>A two-year field experiment with three cropping systems (maize monocrop, soybean monocrop, and maize-soybean intercrop) and four N treatments (control, urea, manure, and manure + urea) was carried out at Luancheng Agro-Ecosystem Experimental Station in the NCP. All N treatments, except the control, received 150 kg N ha<sup>−1</sup>season<sup>−1</sup>, either full dose as a basal application or two equal split applications.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Results showed that all treatments contributed as a net source of N<sub>2</sub>O and CO<sub>2</sub> fluxes but acted as a net sink of CH<sub>4</sub> fluxes. In both cropping seasons, intercrops had significantly lower N<sub>2</sub>O emissions compared to monocropping systems, with 38% and 14% less emissions than maize monocrops in 2018 and 2019, respectively. Additionally, maize monocrops had significantly higher soil CO<sub>2</sub> emissions than other systems, while maize-soybean intercropping had 12% and 13% less CO<sub>2</sub> emissions than maize monocrops in 2018 and 2019, respectively. Among fertilized treatments, manure-treated soils emit notably lower N<sub>2</sub>O fluxes compared to sole urea treatments. In this study, N<sub>2</sub>O and CO<sub>2</sub> fluxes had a strong positive correlation with soil mineral N concentrations, soil temperature, and moisture content. Possibly due to more efficient N utilization, intercrop soils exhibited significantly lower NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>−</sup> concentrations, leading to reduced nitrification and denitrification in the system, resulting in lower N<sub>2</sub>O emissions from maize-soybean intercrops.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Our findings indicate that intercropping maize and soybean reduces soil NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>–</sup> concentrations, as well as significantly decreasing soil N<sub>2</sub>O and CO<sub>2</sub> emissions when compared to traditional maize monoculture. Therefore, due to its potential for reducing soil GHG emissions, maize-soybean intercropping can be regarded as an effective alternative cropping system to the prevailing maize-dominant monoculture to develop a sustainable agroecosystem in the NCP region.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"19 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soils and Sediments","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11368-024-03859-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Aim
Continuous monocropping with high nitrogen (N) fertilizer input substantially increases greenhouse gas (GHG) emissions in maize-based agroecosystems in the North China Plain (NCP). Introducing soybeans as an intercrop with maize and partially substituting urea with manure might effectively decrease GHG emissions. The aim of this study was to quantify the synergistic effect of maize-soybean intercropping and manure on soil GHG emissions.
Methods
A two-year field experiment with three cropping systems (maize monocrop, soybean monocrop, and maize-soybean intercrop) and four N treatments (control, urea, manure, and manure + urea) was carried out at Luancheng Agro-Ecosystem Experimental Station in the NCP. All N treatments, except the control, received 150 kg N ha−1season−1, either full dose as a basal application or two equal split applications.
Results
Results showed that all treatments contributed as a net source of N2O and CO2 fluxes but acted as a net sink of CH4 fluxes. In both cropping seasons, intercrops had significantly lower N2O emissions compared to monocropping systems, with 38% and 14% less emissions than maize monocrops in 2018 and 2019, respectively. Additionally, maize monocrops had significantly higher soil CO2 emissions than other systems, while maize-soybean intercropping had 12% and 13% less CO2 emissions than maize monocrops in 2018 and 2019, respectively. Among fertilized treatments, manure-treated soils emit notably lower N2O fluxes compared to sole urea treatments. In this study, N2O and CO2 fluxes had a strong positive correlation with soil mineral N concentrations, soil temperature, and moisture content. Possibly due to more efficient N utilization, intercrop soils exhibited significantly lower NH4+ and NO3− concentrations, leading to reduced nitrification and denitrification in the system, resulting in lower N2O emissions from maize-soybean intercrops.
Conclusion
Our findings indicate that intercropping maize and soybean reduces soil NH4+ and NO3– concentrations, as well as significantly decreasing soil N2O and CO2 emissions when compared to traditional maize monoculture. Therefore, due to its potential for reducing soil GHG emissions, maize-soybean intercropping can be regarded as an effective alternative cropping system to the prevailing maize-dominant monoculture to develop a sustainable agroecosystem in the NCP region.
期刊介绍:
The Journal of Soils and Sediments (JSS) is devoted to soils and sediments; it deals with contaminated, intact and disturbed soils and sediments. JSS explores both the common aspects and the differences between these two environmental compartments. Inter-linkages at the catchment scale and with the Earth’s system (inter-compartment) are an important topic in JSS. The range of research coverage includes the effects of disturbances and contamination; research, strategies and technologies for prediction, prevention, and protection; identification and characterization; treatment, remediation and reuse; risk assessment and management; creation and implementation of quality standards; international regulation and legislation.