A Layer-Anchoring Strategy for Enhancing Cross-Lingual Speech Emotion Recognition

Shreya G. Upadhyay, Carlos Busso, Chi-Chun Lee
{"title":"A Layer-Anchoring Strategy for Enhancing Cross-Lingual Speech Emotion Recognition","authors":"Shreya G. Upadhyay, Carlos Busso, Chi-Chun Lee","doi":"arxiv-2407.04966","DOIUrl":null,"url":null,"abstract":"Cross-lingual speech emotion recognition (SER) is important for a wide range\nof everyday applications. While recent SER research relies heavily on large\npretrained models for emotion training, existing studies often concentrate\nsolely on the final transformer layer of these models. However, given the\ntask-specific nature and hierarchical architecture of these models, each\ntransformer layer encapsulates different levels of information. Leveraging this\nhierarchical structure, our study focuses on the information embedded across\ndifferent layers. Through an examination of layer feature similarity across\ndifferent languages, we propose a novel strategy called a layer-anchoring\nmechanism to facilitate emotion transfer in cross-lingual SER tasks. Our\napproach is evaluated using two distinct language affective corpora\n(MSP-Podcast and BIIC-Podcast), achieving a best UAR performance of 60.21% on\nthe BIIC-podcast corpus. The analysis uncovers interesting insights into the\nbehavior of popular pretrained models.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-lingual speech emotion recognition (SER) is important for a wide range of everyday applications. While recent SER research relies heavily on large pretrained models for emotion training, existing studies often concentrate solely on the final transformer layer of these models. However, given the task-specific nature and hierarchical architecture of these models, each transformer layer encapsulates different levels of information. Leveraging this hierarchical structure, our study focuses on the information embedded across different layers. Through an examination of layer feature similarity across different languages, we propose a novel strategy called a layer-anchoring mechanism to facilitate emotion transfer in cross-lingual SER tasks. Our approach is evaluated using two distinct language affective corpora (MSP-Podcast and BIIC-Podcast), achieving a best UAR performance of 60.21% on the BIIC-podcast corpus. The analysis uncovers interesting insights into the behavior of popular pretrained models.
增强跨语言语音情感识别的层添加策略
跨语言语音情感识别(SER)对于广泛的日常应用非常重要。虽然最近的 SER 研究在很大程度上依赖于用于情感训练的大型预训练模型,但现有研究往往只关注这些模型的最终转换层。然而,鉴于这些模型的特定任务性质和分层架构,每个转换器层都封装了不同层次的信息。利用这种分层结构,我们的研究重点放在了不同层之间所蕴含的信息上。通过对不同语言层特征相似性的研究,我们提出了一种称为层锚定机制的新策略,以促进跨语言 SER 任务中的情感转移。我们使用两种不同的语言情感语料库(MSP-Podcast 和 BIIC-Podcast)对我们的方法进行了评估,在 BIIC-podcast 语料库中取得了 60.21% 的最佳 UAR 性能。分析揭示了流行的预训练模型行为的有趣之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信