Sude Gurer, Han Lin Shang, Abhijit Mandal, Ufuk Beyaztas
{"title":"Locally sparse and robust partial least squares in scalar-on-function regression","authors":"Sude Gurer, Han Lin Shang, Abhijit Mandal, Ufuk Beyaztas","doi":"10.1007/s11222-024-10464-y","DOIUrl":null,"url":null,"abstract":"<p>We present a novel approach for estimating a scalar-on-function regression model, leveraging a functional partial least squares methodology. Our proposed method involves computing the functional partial least squares components through sparse partial robust M regression, facilitating robust and locally sparse estimations of the regression coefficient function. This strategy delivers a robust decomposition for the functional predictor and regression coefficient functions. After the decomposition, model parameters are estimated using a weighted loss function, incorporating robustness through iterative reweighting of the partial least squares components. The robust decomposition feature of our proposed method enables the robust estimation of model parameters in the scalar-on-function regression model, ensuring reliable predictions in the presence of outliers and leverage points. Moreover, it accurately identifies zero and nonzero sub-regions where the slope function is estimated, even in the presence of outliers and leverage points. We assess our proposed method’s estimation and predictive performance through a series of Monte Carlo experiments and an empirical dataset—that is, data collected in relation to oriented strand board. Compared to existing methods our proposed method performs favorably. Notably, our robust procedure exhibits superior performance in the presence of outliers while maintaining competitiveness in their absence. Our method has been implemented in the <span>robsfplsr</span> package in .</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10464-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel approach for estimating a scalar-on-function regression model, leveraging a functional partial least squares methodology. Our proposed method involves computing the functional partial least squares components through sparse partial robust M regression, facilitating robust and locally sparse estimations of the regression coefficient function. This strategy delivers a robust decomposition for the functional predictor and regression coefficient functions. After the decomposition, model parameters are estimated using a weighted loss function, incorporating robustness through iterative reweighting of the partial least squares components. The robust decomposition feature of our proposed method enables the robust estimation of model parameters in the scalar-on-function regression model, ensuring reliable predictions in the presence of outliers and leverage points. Moreover, it accurately identifies zero and nonzero sub-regions where the slope function is estimated, even in the presence of outliers and leverage points. We assess our proposed method’s estimation and predictive performance through a series of Monte Carlo experiments and an empirical dataset—that is, data collected in relation to oriented strand board. Compared to existing methods our proposed method performs favorably. Notably, our robust procedure exhibits superior performance in the presence of outliers while maintaining competitiveness in their absence. Our method has been implemented in the robsfplsr package in .
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.