Luke T. Peterson, Gavin Brown, Àngel Jorba, Daniel Scheeres
{"title":"Dynamics around the Earth–Moon triangular points in the Hill restricted 4-body problem","authors":"Luke T. Peterson, Gavin Brown, Àngel Jorba, Daniel Scheeres","doi":"10.1007/s10569-024-10203-5","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the motion of a small particle moving near the triangular points of the Earth–Moon system. The dynamics are modeled in the Hill restricted 4-body problem (HR4BP), which includes the effect of the Earth and Moon as in the circular restricted 3-body problem (CR3BP), as well as the direct and indirect effect of the Sun as a periodic time-dependent perturbation of the CR3BP. Due to the periodic perturbation, the triangular points of the CR3BP are no longer equilibrium solutions; rather, the triangular points are replaced by periodic orbits with the same period as the perturbation. Additionally, there is a 2:1 resonant periodic orbit that persists from the CR3BP into the HR4BP. In this work, we investigate the dynamics around these invariant objects by performing a center manifold reduction and computing families of 2-dimensional invariant tori and their linear normal behavior. We identify bifurcations and relationships between families. Mechanisms for transport between the Earth, <span>\\(L_4\\)</span>, and the Moon are discussed. Comparisons are made between the results presented here and in the bicircular problem (BCP).</p>","PeriodicalId":72537,"journal":{"name":"Celestial mechanics and dynamical astronomy","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Celestial mechanics and dynamical astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10569-024-10203-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the motion of a small particle moving near the triangular points of the Earth–Moon system. The dynamics are modeled in the Hill restricted 4-body problem (HR4BP), which includes the effect of the Earth and Moon as in the circular restricted 3-body problem (CR3BP), as well as the direct and indirect effect of the Sun as a periodic time-dependent perturbation of the CR3BP. Due to the periodic perturbation, the triangular points of the CR3BP are no longer equilibrium solutions; rather, the triangular points are replaced by periodic orbits with the same period as the perturbation. Additionally, there is a 2:1 resonant periodic orbit that persists from the CR3BP into the HR4BP. In this work, we investigate the dynamics around these invariant objects by performing a center manifold reduction and computing families of 2-dimensional invariant tori and their linear normal behavior. We identify bifurcations and relationships between families. Mechanisms for transport between the Earth, \(L_4\), and the Moon are discussed. Comparisons are made between the results presented here and in the bicircular problem (BCP).