Microstructural design by combining nanograins and spinodal decomposition in a Fe-Cr alloy

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Juan Macchi , Olha Nakonechna , Ronan Henry , Celia Castro , Kaveh Edalati , Frederic De Geuser , Xavier Sauvage , Williams Lefebvre
{"title":"Microstructural design by combining nanograins and spinodal decomposition in a Fe-Cr alloy","authors":"Juan Macchi ,&nbsp;Olha Nakonechna ,&nbsp;Ronan Henry ,&nbsp;Celia Castro ,&nbsp;Kaveh Edalati ,&nbsp;Frederic De Geuser ,&nbsp;Xavier Sauvage ,&nbsp;Williams Lefebvre","doi":"10.1016/j.scriptamat.2024.116247","DOIUrl":null,"url":null,"abstract":"<div><p>Microstructure design of new high-performance alloys requires the combination of multiple hardening mechanisms. This study explores combining nanograins with spinodal decomposition strengthening in an Fe-51.4Cr (at.%) alloy. High-pressure torsion (HPT) produced a nanostructure with a 51 nm grain size. Atom probe tomography analysis of deformed and annealed samples revealed spinodal decomposition after one hour of annealing. HPT accelerated decomposition kinetics is due to the high vacancy concentration. Microhardness remained stable due to spinodal hardening, despite a decrease in the Hall-Petch strengthening contribution. However, fracture toughness decreased.</p></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359646224002823/pdfft?md5=e4259bdba8323d85e0040d7939fed4c2&pid=1-s2.0-S1359646224002823-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224002823","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Microstructure design of new high-performance alloys requires the combination of multiple hardening mechanisms. This study explores combining nanograins with spinodal decomposition strengthening in an Fe-51.4Cr (at.%) alloy. High-pressure torsion (HPT) produced a nanostructure with a 51 nm grain size. Atom probe tomography analysis of deformed and annealed samples revealed spinodal decomposition after one hour of annealing. HPT accelerated decomposition kinetics is due to the high vacancy concentration. Microhardness remained stable due to spinodal hardening, despite a decrease in the Hall-Petch strengthening contribution. However, fracture toughness decreased.

Abstract Image

Abstract Image

在铁铬合金中结合纳米晶粒和尖晶分解进行微结构设计
新型高性能合金的微观结构设计需要结合多种硬化机制。本研究探讨了在 Fe-51.4Cr (at.%) 合金中将纳米晶粒与尖晶分解强化相结合的问题。高压扭转(HPT)产生了晶粒大小为 51 纳米的纳米结构。对变形和退火样品进行的原子探针断层扫描分析表明,退火一小时后就会出现尖晶分解。HPT 加速分解动力学是由于高空位浓度造成的。尽管霍尔-佩奇(Hall-Petch)强化作用下降,但由于尖晶石硬化,显微硬度保持稳定。不过,断裂韧性有所下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信