{"title":"The mean exiting time for the biased correlated random walk characterized by a system of first-order PDEs","authors":"Jianliang Tang, Mingqing Xiao","doi":"10.1080/00036811.2024.2368702","DOIUrl":null,"url":null,"abstract":"A biased correlated random walk (BCRW) is a stochastic process that models individual movement and other similar practical phenomena. This paper studies the mean exiting time of a BCRW in a finite ...","PeriodicalId":55507,"journal":{"name":"Applicable Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00036811.2024.2368702","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A biased correlated random walk (BCRW) is a stochastic process that models individual movement and other similar practical phenomena. This paper studies the mean exiting time of a BCRW in a finite ...
期刊介绍:
Applicable Analysis is concerned primarily with analysis that has application to scientific and engineering problems. Papers should indicate clearly an application of the mathematics involved. On the other hand, papers that are primarily concerned with modeling rather than analysis are outside the scope of the journal
General areas of analysis that are welcomed contain the areas of differential equations, with emphasis on PDEs, and integral equations, nonlinear analysis, applied functional analysis, theoretical numerical analysis and approximation theory. Areas of application, for instance, include the use of homogenization theory for electromagnetic phenomena, acoustic vibrations and other problems with multiple space and time scales, inverse problems for medical imaging and geophysics, variational methods for moving boundary problems, convex analysis for theoretical mechanics and analytical methods for spatial bio-mathematical models.