3D Tensor Renormalisation Group at High Temperatures

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Nikolay Ebel
{"title":"3D Tensor Renormalisation Group at High Temperatures","authors":"Nikolay Ebel","doi":"10.1007/s00023-024-01464-9","DOIUrl":null,"url":null,"abstract":"<div><p>Building upon previous 2D studies, this research focuses on describing 3D tensor renormalisation group (RG) flows for lattice spin systems, such as the Ising model. We present a novel RG map, which operates on tensors with infinite-dimensional legs and does not involve truncations, in contrast to numerical tensor RG maps. To construct this map, we developed new techniques for analysing tensor networks. Our analysis shows that the constructed RG map contracts the region around the tensor <span>\\(A_*\\)</span>, corresponding to the high-temperature phase of the 3D Ising model. This leads to the iterated RG map convergence in the Hilbert–Schmidt norm to <span>\\(A_*\\)</span> when initialised in the vicinity of <span>\\(A_*\\)</span>. This work provides the first steps towards the rigorous understanding of tensor RG maps in 3D.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 4","pages":"1291 - 1351"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01464-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Building upon previous 2D studies, this research focuses on describing 3D tensor renormalisation group (RG) flows for lattice spin systems, such as the Ising model. We present a novel RG map, which operates on tensors with infinite-dimensional legs and does not involve truncations, in contrast to numerical tensor RG maps. To construct this map, we developed new techniques for analysing tensor networks. Our analysis shows that the constructed RG map contracts the region around the tensor \(A_*\), corresponding to the high-temperature phase of the 3D Ising model. This leads to the iterated RG map convergence in the Hilbert–Schmidt norm to \(A_*\) when initialised in the vicinity of \(A_*\). This work provides the first steps towards the rigorous understanding of tensor RG maps in 3D.

Abstract Image

Abstract Image

高温下的三维张量重正化群
在以往二维研究的基础上,本研究侧重于描述晶格自旋系统(如伊辛模型)的三维张量重正化群(RG)流。我们提出了一种新颖的 RG 映射,与数值张量 RG 映射不同的是,这种映射适用于具有无限维腿的张量,而且不涉及截断。为了构建这一映射,我们开发了分析张量网络的新技术。我们的分析表明,构建的 RG 地图收缩了张量 \(A_*\)周围的区域,对应于三维伊辛模型的高温阶段。这导致迭代 RG 地图在 \(A_*\) 附近初始化时以希尔伯特-施密特规范收敛于 \(A_*\)。这项工作为严格理解三维张量RG图迈出了第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信