{"title":"Convergence of generalized MIT bag models to Dirac operators with zigzag boundary conditions","authors":"Joaquim Duran, Albert Mas","doi":"10.1007/s13324-024-00946-7","DOIUrl":null,"url":null,"abstract":"<div><p>This work addresses the resolvent convergence of generalized MIT bag operators to Dirac operators with zigzag type boundary conditions. We prove that the convergence holds in strong but not in norm resolvent sense. Moreover, we show that the only obstruction for having norm resolvent convergence is the existence of an eigenvalue of infinite multiplicity for the limiting operator. More precisely, we prove the convergence of the resolvents in operator norm once projected into the orthogonal of the corresponding eigenspace.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00946-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work addresses the resolvent convergence of generalized MIT bag operators to Dirac operators with zigzag type boundary conditions. We prove that the convergence holds in strong but not in norm resolvent sense. Moreover, we show that the only obstruction for having norm resolvent convergence is the existence of an eigenvalue of infinite multiplicity for the limiting operator. More precisely, we prove the convergence of the resolvents in operator norm once projected into the orthogonal of the corresponding eigenspace.
这项研究解决了广义 MIT 袋算子对具有之字形边界条件的狄拉克算子的解析收敛问题。我们证明了这种收敛在强收敛意义上成立,但在规范解析意义上不成立。此外,我们还证明了要实现规范解析收敛的唯一障碍是极限算子存在一个无限倍性的特征值。更确切地说,我们证明了一旦投影到相应特征空间的正交面上,算子规范解析子的收敛性。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.