A Generalized Brezis–Lieb Lemma on Graphs and Its Application to Kirchhoff Type Equations

IF 1 3区 数学 Q1 MATHEMATICS
Sheng Cheng, Shuai Yao, Haibo Chen
{"title":"A Generalized Brezis–Lieb Lemma on Graphs and Its Application to Kirchhoff Type Equations","authors":"Sheng Cheng, Shuai Yao, Haibo Chen","doi":"10.1007/s40840-024-01741-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, with the help of potential function, we extend the classical Brezis–Lieb lemma on Euclidean space to graphs, which can be applied to the following Kirchhoff equation </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{l} -\\left( 1+b \\int _{\\mathbb { V}}|\\nabla u|^2 d \\mu \\right) \\Delta u+ \\left( \\lambda V(x) +1 \\right) u=|u|^{p-2} u \\ \\text{ in } \\mathbb { V}, \\\\ u \\in W^{1,2}(\\mathbb {V}), \\end{array}\\right. \\end{aligned}$$</span><p>on a connected locally finite graph <span>\\(G=(\\mathbb {V}, \\mathbb {E})\\)</span>, where <span>\\(b, \\lambda &gt;0\\)</span>, <span>\\(p&gt;2\\)</span> and <i>V</i>(<i>x</i>) is a potential function defined on <span>\\(\\mathbb {V}\\)</span>. The purpose of this paper is four-fold. First of all, using the idea of the filtration Nehari manifold technique and a compactness result based on generalized Brezis–Lieb lemma on graphs, we prove that there admits a positive solution <span>\\(u_{\\lambda , b} \\in E_\\lambda \\)</span> with positive energy for <span>\\(b \\in (0, b^*)\\)</span> when <span>\\(2&lt;p&lt;4\\)</span>. In the sequel, when <span>\\(p \\geqslant 4\\)</span>, a positive ground state solution <span>\\(w_{\\lambda , b} \\in E_\\lambda \\)</span> is also obtained by using standard variational methods. What’s more, we explore various asymptotic behaviors of <span>\\(u_{\\lambda , b}, w_{\\lambda , b} \\in E_\\lambda \\)</span> by separately controlling the parameters <span>\\(\\lambda \\rightarrow \\infty \\)</span> and <span>\\(b \\rightarrow 0^{+}\\)</span>, as well as jointly controlling both parameters. Finally, we utilize iteration to obtain the <span>\\(L^{\\infty }\\)</span>-norm estimates of the solution.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"56 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01741-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, with the help of potential function, we extend the classical Brezis–Lieb lemma on Euclidean space to graphs, which can be applied to the following Kirchhoff equation

$$\begin{aligned} \left\{ \begin{array}{l} -\left( 1+b \int _{\mathbb { V}}|\nabla u|^2 d \mu \right) \Delta u+ \left( \lambda V(x) +1 \right) u=|u|^{p-2} u \ \text{ in } \mathbb { V}, \\ u \in W^{1,2}(\mathbb {V}), \end{array}\right. \end{aligned}$$

on a connected locally finite graph \(G=(\mathbb {V}, \mathbb {E})\), where \(b, \lambda >0\), \(p>2\) and V(x) is a potential function defined on \(\mathbb {V}\). The purpose of this paper is four-fold. First of all, using the idea of the filtration Nehari manifold technique and a compactness result based on generalized Brezis–Lieb lemma on graphs, we prove that there admits a positive solution \(u_{\lambda , b} \in E_\lambda \) with positive energy for \(b \in (0, b^*)\) when \(2<p<4\). In the sequel, when \(p \geqslant 4\), a positive ground state solution \(w_{\lambda , b} \in E_\lambda \) is also obtained by using standard variational methods. What’s more, we explore various asymptotic behaviors of \(u_{\lambda , b}, w_{\lambda , b} \in E_\lambda \) by separately controlling the parameters \(\lambda \rightarrow \infty \) and \(b \rightarrow 0^{+}\), as well as jointly controlling both parameters. Finally, we utilize iteration to obtain the \(L^{\infty }\)-norm estimates of the solution.

Abstract Image

图形上的广义 Brezis-Lieb 定理及其在基尔霍夫式方程中的应用
在本文中,借助势函数,我们将欧几里得空间上的经典 Brezis-Lieb Lemma 扩展到图,并将其应用于下面的基尔霍夫方程 $$\begin{aligned}-left( 1+b \int _\mathbb { V}}|\nabla u|^2 d \mu \right) \Delta u+ \left( \lambda V(x) +1 \right) u=|u|^{p-2} u \text{ in }\u in W^{1,2}(\mathbb {V}), end{array}\right.\end{aligned}$on a connected locally finite graph \(G=(\mathbb {V}, \mathbb {E})\), where \(b, \lambda >0\), \(p>2\) and V(x) is a potential function defined on \(\mathbb {V}\).本文的目的有四个方面。首先,利用过滤内哈里流形技术的思想和基于图上广义布雷齐斯-利布(Brezis-Lieb)lemma的紧凑性结果,我们证明了当\(2<p<4\)时,在E_\lambda\(0, b^*)\(b\in(0, b^*)\)上存在一个具有正能量的正解\(u_{\lambda , b} \in E_\lambda \)。在接下来的研究中,当(p大于4)时,使用标准的变分法也可以得到正基态解(w_{/lambda , b} \in E_\lambda \)。此外,我们还通过分别控制参数\(\lambda \rightarrow \infty \)和\(b \rightarrow 0^{+}/),以及联合控制这两个参数,探索了\(u_{/lambda , b}, w_{\lambda , b} \in E_\lambda \)的各种渐近行为。最后,我们利用迭代来获得解的正态估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信