Uniqueness Result Concerning First Derivative and Difference of a Meromorphic Function andSufficient Condition for Periodicity

Pub Date : 2024-07-09 DOI:10.3103/s1068362324700109
S. Majumder, N. Sarkar
{"title":"Uniqueness Result Concerning First Derivative and Difference of a Meromorphic Function andSufficient Condition for Periodicity","authors":"S. Majumder, N. Sarkar","doi":"10.3103/s1068362324700109","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In the paper, we discuss the uniqueness problem of meromorphic function <span>\\(f(z)\\)</span> when <span>\\(f^{\\prime}(z)\\)</span> shares <span>\\(a\\)</span>, <span>\\(b\\)</span> and <span>\\(\\infty\\)</span> CM with <span>\\(\\Delta_{c}f(z)\\)</span>, where <span>\\(a\\)</span> and <span>\\(b\\)</span> are two distinct finite values. The obtained result improves the recent result of Qi et al. [6] by dropping the condition ‘‘order of growth of <span>\\(f\\)</span> is not an integer or infinite’’ by ‘‘<span>\\(\\rho(f)&lt;\\infty\\)</span>’’. Also in the paper we give an affirmative answer of the question raised by Wei et al. [9].</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362324700109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the paper, we discuss the uniqueness problem of meromorphic function \(f(z)\) when \(f^{\prime}(z)\) shares \(a\), \(b\) and \(\infty\) CM with \(\Delta_{c}f(z)\), where \(a\) and \(b\) are two distinct finite values. The obtained result improves the recent result of Qi et al. [6] by dropping the condition ‘‘order of growth of \(f\) is not an integer or infinite’’ by ‘‘\(\rho(f)<\infty\)’’. Also in the paper we give an affirmative answer of the question raised by Wei et al. [9].

分享
查看原文
关于一次函数的一阶导数和差分的唯一性结果以及周期性的充分条件
Abstract 本文讨论了当\(f^{\prime}(z))与\(\Delta_{c}f(z)\)共享\(a\)、\(b\)和\(\infty\)CM,其中\(a\)和\(b\)是两个不同的有限值时,并变函数\(f(z)\)的唯一性问题。所得到的结果改进了齐等人最近的结果[6],放弃了"'\(f)的增长阶数不是整数或无限'"的条件,改为"'\(\rho(f)<\infty\)'"。在本文中,我们还对 Wei 等人[9]提出的问题给出了肯定的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信