{"title":"Assessing the shear strength of sandy soil reinforced with polyethylene-terephthalate: an AI-based approach","authors":"Masoud Samaei, Morteza Alinejad Omran, Mohsen Keramati, Reza Naderi, Roohollah Shirani Faradonbeh","doi":"10.1007/s12145-024-01398-0","DOIUrl":null,"url":null,"abstract":"<p>This research aimed to investigate the effectiveness of Polyethylene-Terephthalate (PET) as a reinforcement material for sandy soils in enhancing the shear strength. To achieve this, different concentrations of PET were tested, and 118 sets of data were collected. Parameters such as relative density, normal stress in direct shear strength test, and types of PET elements (1 × 1, 1 × 5, and fiber) were also recorded. Subsequently, four decision tree-oriented machine learning (ML) methods—decision tree (DT), random forest (RF), AdaBoost, and XGBoost—were applied to construct models capable of forecasting enhancements in shear strength. The evaluation of these models' effectiveness was conducted using four established statistical metrics: R<sup>2</sup>, RMSE, VAF, and A-10. The results showed that AdaBoost results in the highest prediction accuracy among other algorithms, representing the high modelling performance of the algorithm in dealing with complex nonlinear problems. The conducted sensitivity analysis also revealed that relative density is the most crucial parameter for all the algorithms in predicting the output, followed by PET percentage and normal stress. Furthermore, to make the developed model in this study more practical and easy to use, a Graphical User Interface (GUI) was created, enabling the engineers and researchers to perform the analysis straightforwardly.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":"70 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01398-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This research aimed to investigate the effectiveness of Polyethylene-Terephthalate (PET) as a reinforcement material for sandy soils in enhancing the shear strength. To achieve this, different concentrations of PET were tested, and 118 sets of data were collected. Parameters such as relative density, normal stress in direct shear strength test, and types of PET elements (1 × 1, 1 × 5, and fiber) were also recorded. Subsequently, four decision tree-oriented machine learning (ML) methods—decision tree (DT), random forest (RF), AdaBoost, and XGBoost—were applied to construct models capable of forecasting enhancements in shear strength. The evaluation of these models' effectiveness was conducted using four established statistical metrics: R2, RMSE, VAF, and A-10. The results showed that AdaBoost results in the highest prediction accuracy among other algorithms, representing the high modelling performance of the algorithm in dealing with complex nonlinear problems. The conducted sensitivity analysis also revealed that relative density is the most crucial parameter for all the algorithms in predicting the output, followed by PET percentage and normal stress. Furthermore, to make the developed model in this study more practical and easy to use, a Graphical User Interface (GUI) was created, enabling the engineers and researchers to perform the analysis straightforwardly.
期刊介绍:
The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.