Improved Outerplanarity Bounds for Planar Graphs

Therese Biedl, Debajyoti Mondal
{"title":"Improved Outerplanarity Bounds for Planar Graphs","authors":"Therese Biedl, Debajyoti Mondal","doi":"arxiv-2407.04282","DOIUrl":null,"url":null,"abstract":"In this paper, we study the outerplanarity of planar graphs, i.e., the number\nof times that we must (in a planar embedding that we can initially freely\nchoose) remove the outerface vertices until the graph is empty. It is\nwell-known that there are $n$-vertex graphs with outerplanarity\n$\\tfrac{n}{6}+\\Theta(1)$, and not difficult to show that the outerplanarity can\nnever be bigger. We give here improved bounds of the form\n$\\tfrac{n}{2g}+2g+O(1)$, where $g$ is the fence-girth, i.e., the length of the\nshortest cycle with vertices on both sides. This parameter $g$ is at least the\nconnectivity of the graph, and often bigger; for example, our results imply\nthat planar bipartite graphs have outerplanarity $\\tfrac{n}{8}+O(1)$. We also\nshow that the outerplanarity of a planar graph $G$ is at most\n$\\tfrac{1}{2}$diam$(G)+O(\\sqrt{n})$, where diam$(G)$ is the diameter of the\ngraph. All our bounds are tight up to smaller-order terms, and a planar\nembedding that achieves the outerplanarity bound can be found in linear time.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the outerplanarity of planar graphs, i.e., the number of times that we must (in a planar embedding that we can initially freely choose) remove the outerface vertices until the graph is empty. It is well-known that there are $n$-vertex graphs with outerplanarity $\tfrac{n}{6}+\Theta(1)$, and not difficult to show that the outerplanarity can never be bigger. We give here improved bounds of the form $\tfrac{n}{2g}+2g+O(1)$, where $g$ is the fence-girth, i.e., the length of the shortest cycle with vertices on both sides. This parameter $g$ is at least the connectivity of the graph, and often bigger; for example, our results imply that planar bipartite graphs have outerplanarity $\tfrac{n}{8}+O(1)$. We also show that the outerplanarity of a planar graph $G$ is at most $\tfrac{1}{2}$diam$(G)+O(\sqrt{n})$, where diam$(G)$ is the diameter of the graph. All our bounds are tight up to smaller-order terms, and a planar embedding that achieves the outerplanarity bound can be found in linear time.
平面图的改进外平面性边界
本文研究平面图的外平面性,即我们必须(在我们最初可以自由选择的平面嵌入中)移除外表面顶点直到图为空的次数。众所周知,存在外平面度为$tfrac{n}{6}+\Theta(1)$的$n$顶点图,而且不难证明外平面度永远不会更大。我们在此给出了改进的边界,其形式为$tfrac{n}{2g}+2g+O(1)$,其中$g$为栅栏边长,即两边都有顶点的最短循环的长度。这个参数 $g$ 至少是图的连通性,而且通常更大;例如,我们的结果意味着平面二叉图具有外平面性 $tfrac{n}{8}+O(1)$。我们还证明了平面图 $G$ 的外平面性最多为 $tfrac{1}{2}$diam$(G)+O(\sqrt{n})$,其中 diam$(G)$ 是图的直径。我们所有的约束都很紧,直到更小的阶项,而且可以在线性时间内找到实现外部平面性约束的平面嵌套。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信