Algorithmic Results for Weak Roman Domination Problem in Graphs

Kaustav Paul, Ankit Sharma, Arti Pandey
{"title":"Algorithmic Results for Weak Roman Domination Problem in Graphs","authors":"Kaustav Paul, Ankit Sharma, Arti Pandey","doi":"arxiv-2407.03812","DOIUrl":null,"url":null,"abstract":"Consider a graph $G = (V, E)$ and a function $f: V \\rightarrow \\{0, 1, 2\\}$.\nA vertex $u$ with $f(u)=0$ is defined as \\emph{undefended} by $f$ if it lacks\nadjacency to any vertex with a positive $f$-value. The function $f$ is said to\nbe a \\emph{Weak Roman Dominating function} (WRD function) if, for every vertex\n$u$ with $f(u) = 0$, there exists a neighbour $v$ of $u$ with $f(v) > 0$ and a\nnew function $f': V \\rightarrow \\{0, 1, 2\\}$ defined in the following way:\n$f'(u) = 1$, $f'(v) = f(v) - 1$, and $f'(w) = f(w)$, for all vertices $w$ in\n$V\\setminus\\{u,v\\}$; so that no vertices are undefended by $f'$. The total\nweight of $f$ is equal to $\\sum_{v\\in V} f(v)$, and is denoted as $w(f)$. The\n\\emph{Weak Roman Domination Number} denoted by $\\gamma_r(G)$, represents\n$min\\{w(f)~\\vert~f$ is a WRD function of $G\\}$. For a given graph $G$, the\nproblem of finding a WRD function of weight $\\gamma_r(G)$ is defined as the\n\\emph{Minimum Weak Roman domination problem}. The problem is already known to\nbe NP-hard for bipartite and chordal graphs. In this paper, we further study\nthe algorithmic complexity of the problem. We prove the NP-hardness of the\nproblem for star convex bipartite graphs and comb convex bipartite graphs,\nwhich are subclasses of bipartite graphs. In addition, we show that for the\nbounded degree star convex bipartite graphs, the problem is efficiently\nsolvable. We also prove the NP-hardness of the problem for split graphs, a\nsubclass of chordal graphs. On the positive side, we give polynomial-time\nalgorithms to solve the problem for $P_4$-sparse graphs. Further, we have\npresented some approximation results.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a graph $G = (V, E)$ and a function $f: V \rightarrow \{0, 1, 2\}$. A vertex $u$ with $f(u)=0$ is defined as \emph{undefended} by $f$ if it lacks adjacency to any vertex with a positive $f$-value. The function $f$ is said to be a \emph{Weak Roman Dominating function} (WRD function) if, for every vertex $u$ with $f(u) = 0$, there exists a neighbour $v$ of $u$ with $f(v) > 0$ and a new function $f': V \rightarrow \{0, 1, 2\}$ defined in the following way: $f'(u) = 1$, $f'(v) = f(v) - 1$, and $f'(w) = f(w)$, for all vertices $w$ in $V\setminus\{u,v\}$; so that no vertices are undefended by $f'$. The total weight of $f$ is equal to $\sum_{v\in V} f(v)$, and is denoted as $w(f)$. The \emph{Weak Roman Domination Number} denoted by $\gamma_r(G)$, represents $min\{w(f)~\vert~f$ is a WRD function of $G\}$. For a given graph $G$, the problem of finding a WRD function of weight $\gamma_r(G)$ is defined as the \emph{Minimum Weak Roman domination problem}. The problem is already known to be NP-hard for bipartite and chordal graphs. In this paper, we further study the algorithmic complexity of the problem. We prove the NP-hardness of the problem for star convex bipartite graphs and comb convex bipartite graphs, which are subclasses of bipartite graphs. In addition, we show that for the bounded degree star convex bipartite graphs, the problem is efficiently solvable. We also prove the NP-hardness of the problem for split graphs, a subclass of chordal graphs. On the positive side, we give polynomial-time algorithms to solve the problem for $P_4$-sparse graphs. Further, we have presented some approximation results.
图中弱罗马支配问题的算法结果
考虑一个图 $G = (V, E)$ 和一个函数 $f:如果一个顶点 $u$ 与任何具有正 $f$ 值的顶点都没有相邻关系,那么具有 $f(u)=0$的顶点 $u$ 就被定义为 $f$ 的 \emph{undefended} 。如果对于 $f(u) = 0$ 的每一个顶点$u$,都存在一个 $f(v) > 0$ 的$u$的邻域$v$和一个新的函数$f',那么函数$f$就被称为一个弱罗马占优函数(Weak Roman Dominating function):V \rightarrow \{0, 1, 2\}$ 中的所有顶点 $w$,定义如下:$f'(u) = 1$,$f'(v) = f(v) - 1$,$f'(w) = f(w)$;因此没有顶点不被 $f'$ 防御。$f$ 的总重等于 $/sum_{v/inV}f(v)$,记为 $w(f)$。用 $\gamma_r(G)$ 表示的{弱罗马支配数}代表$min/{w(f)~\vert~f$ 是 $G\}$ 的 WRD 函数。对于给定的图 $G$,寻找权重为 $\gamma_r(G)$的 WRD 函数的问题被定义为最小弱罗马支配问题(Minimum Weak Roman domination problem)。对于双向图和和弦图来说,这个问题已经被认为是 NP-hard。本文将进一步研究该问题的算法复杂性。我们证明了星形凸双artite图和梳状凸双artite图问题的NP难性,它们都是双artite图的子类。此外,我们还证明了对于有界度星凸双态图,该问题是可以高效解决的。我们还证明了作为弦图子类的分裂图问题的 NP 难度。从积极的方面看,我们给出了解决 $P_4$ 稀疏图问题的多项式时间算法。此外,我们还提出了一些近似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信