Crossing Numbers of Beyond Planar Graphs Re-revisited: A Framework Approach

Markus Chimani, Torben Donzelmann, Nick Kloster, Melissa Koch, Jan-Jakob Völlering, Mirko H. Wagner
{"title":"Crossing Numbers of Beyond Planar Graphs Re-revisited: A Framework Approach","authors":"Markus Chimani, Torben Donzelmann, Nick Kloster, Melissa Koch, Jan-Jakob Völlering, Mirko H. Wagner","doi":"arxiv-2407.05057","DOIUrl":null,"url":null,"abstract":"Beyond planarity concepts (prominent examples include k-planarity or\nfan-planarity) apply certain restrictions on the allowed patterns of crossings\nin drawings. It is natural to ask, how much the number of crossings may\nincrease over the traditional (unrestricted) crossing number. Previous\napproaches to bound such ratios, e.g. [arXiv:1908.03153, arXiv:2105.12452],\nrequire very specialized constructions and arguments for each considered beyond\nplanarity concept, and mostly only yield asymptotically non-tight bounds. We\npropose a very general proof framework that allows us to obtain asymptotically\ntight bounds, and where the concept-specific parts of the proof typically boil\ndown to a couple of lines. We show the strength of our approach by giving\nimproved or first bounds for several beyond planarity concepts.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.05057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Beyond planarity concepts (prominent examples include k-planarity or fan-planarity) apply certain restrictions on the allowed patterns of crossings in drawings. It is natural to ask, how much the number of crossings may increase over the traditional (unrestricted) crossing number. Previous approaches to bound such ratios, e.g. [arXiv:1908.03153, arXiv:2105.12452], require very specialized constructions and arguments for each considered beyond planarity concept, and mostly only yield asymptotically non-tight bounds. We propose a very general proof framework that allows us to obtain asymptotically tight bounds, and where the concept-specific parts of the proof typically boil down to a couple of lines. We show the strength of our approach by giving improved or first bounds for several beyond planarity concepts.
再论超越平面图形的交叉数:框架方法
除了平面性概念(著名的例子包括 k 平面性或扇形平面性)之外,还对图纸中允许的交叉模式施加了某些限制。我们自然会问,与传统的(无限制的)交叉数量相比,交叉数量可能会增加多少。以前约束这种比率的方法,例如[arXiv:1908.03153, arXiv:2105.12452],需要为每个考虑的超越平面概念进行非常专门的构造和论证,而且大多只能得到渐近的非严密约束。我们提出了一个非常通用的证明框架,它允许我们获得渐近严密的边界,而且证明中与概念相关的部分通常只需几行。我们通过给出几个超越平面性概念的改进或首次边界,展示了我们方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信