Flip Dynamics for Sampling Colorings: Improving $(11/6-ε)$ Using a Simple Metric

Charlie Carlson, Eric Vigoda
{"title":"Flip Dynamics for Sampling Colorings: Improving $(11/6-ε)$ Using a Simple Metric","authors":"Charlie Carlson, Eric Vigoda","doi":"arxiv-2407.04870","DOIUrl":null,"url":null,"abstract":"We present improved bounds for randomly sampling $k$-colorings of graphs with\nmaximum degree $\\Delta$; our results hold without any further assumptions on\nthe graph. The Glauber dynamics is a simple single-site update Markov chain.\nJerrum (1995) proved an optimal $O(n\\log{n})$ mixing time bound for Glauber\ndynamics whenever $k>2\\Delta$ where $\\Delta$ is the maximum degree of the input\ngraph. This bound was improved by Vigoda (1999) to $k > (11/6)\\Delta$ using a\n\"flip\" dynamics which recolors (small) maximal 2-colored components in each\nstep. Vigoda's result was the best known for general graphs for 20 years until\nChen et al. (2019) established optimal mixing of the flip dynamics for $k >\n(11/6 - \\epsilon ) \\Delta$ where $\\epsilon \\approx 10^{-5}$. We present the\nfirst substantial improvement over these results. We prove an optimal mixing\ntime bound of $O(n\\log{n})$ for the flip dynamics when $k \\geq 1.809 \\Delta$.\nThis yields, through recent spectral independence results, an optimal\n$O(n\\log{n})$ mixing time for the Glauber dynamics for the same range of\n$k/\\Delta$ when $\\Delta=O(1)$. Our proof utilizes path coupling with a simple\nweighted Hamming distance for \"unblocked\" neighbors.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present improved bounds for randomly sampling $k$-colorings of graphs with maximum degree $\Delta$; our results hold without any further assumptions on the graph. The Glauber dynamics is a simple single-site update Markov chain. Jerrum (1995) proved an optimal $O(n\log{n})$ mixing time bound for Glauber dynamics whenever $k>2\Delta$ where $\Delta$ is the maximum degree of the input graph. This bound was improved by Vigoda (1999) to $k > (11/6)\Delta$ using a "flip" dynamics which recolors (small) maximal 2-colored components in each step. Vigoda's result was the best known for general graphs for 20 years until Chen et al. (2019) established optimal mixing of the flip dynamics for $k > (11/6 - \epsilon ) \Delta$ where $\epsilon \approx 10^{-5}$. We present the first substantial improvement over these results. We prove an optimal mixing time bound of $O(n\log{n})$ for the flip dynamics when $k \geq 1.809 \Delta$. This yields, through recent spectral independence results, an optimal $O(n\log{n})$ mixing time for the Glauber dynamics for the same range of $k/\Delta$ when $\Delta=O(1)$. Our proof utilizes path coupling with a simple weighted Hamming distance for "unblocked" neighbors.
采样着色的翻转动力学:使用简单度量改进 $(11/6-ε)$
我们提出了最大度数为 $\Delta$ 的图中随机采样 $k$ 着色的改进边界;我们的结果无需对图做任何进一步假设即可成立。Jerrum(1995)证明了当 $k>2\Delta$ 时,Glauber 动力学的最优 $O(n\log{n})$ 混合时间约束,其中 $\Delta$ 是输入图的最大度。Vigoda (1999)使用 "翻转 "动力学将这一约束改进为 $k > (11/6)\Delta$ ,该动力学在每一步中重新对(小)最大 2 色成分进行着色。20 年来,Vigoda 的结果一直是一般图中最著名的结果,直到陈等人(2019)针对 $k >(11/6 - \epsilon ) \Delta$ 建立了翻转动力学的最优混合,其中 $ \epsilon \approx 10^{-5}$。我们首次提出了对这些结果的实质性改进。我们证明了当 $k \geq 1.809 \Delta$ 时,翻转动力学的最佳混合时间约束为 $O(n\log{n})$。通过最近的谱独立性结果,我们得出了当 $\Delta=O(1)$ 时,在相同的 $k/\Delta$ 范围内,格劳伯动力学的最佳混合时间为 $O(n\log{n})$。我们的证明利用了路径耦合与 "无阻塞 "邻居的简单加权汉明距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信