Basins of Attraction in Two-Player Random Ordinal Potential Games

Andrea Collevecchio, Hlafo Alfie Mimun, Matteo Quattropani, Marco Scarsini
{"title":"Basins of Attraction in Two-Player Random Ordinal Potential Games","authors":"Andrea Collevecchio, Hlafo Alfie Mimun, Matteo Quattropani, Marco Scarsini","doi":"arxiv-2407.05460","DOIUrl":null,"url":null,"abstract":"We consider the class of two-person ordinal potential games where each player\nhas the same number of actions $K$. Each game in this class admits at least one\npure Nash equilibrium and the best-response dynamics converges to one of these\npure Nash equilibria; which one depends on the starting point. So, each pure\nNash equilibrium has a basin of attraction. We pick uniformly at random one game from this class and we study the joint\ndistribution of the sizes of the basins of attraction. We provide an asymptotic\nexact value for the expected basin of attraction of each pure Nash equilibrium,\nwhen the number of actions $K$ goes to infinity.","PeriodicalId":501188,"journal":{"name":"arXiv - ECON - Theoretical Economics","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Theoretical Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.05460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the class of two-person ordinal potential games where each player has the same number of actions $K$. Each game in this class admits at least one pure Nash equilibrium and the best-response dynamics converges to one of these pure Nash equilibria; which one depends on the starting point. So, each pure Nash equilibrium has a basin of attraction. We pick uniformly at random one game from this class and we study the joint distribution of the sizes of the basins of attraction. We provide an asymptotic exact value for the expected basin of attraction of each pure Nash equilibrium, when the number of actions $K$ goes to infinity.
双人随机正序势能游戏中的吸引力基础
我们考虑的是两人序数势能博弈,其中每个博弈者都有相同数量的行动 $K$。这类博弈中的每个博弈都至少有一个纯纳什均衡,而且最佳反应动力学会收敛到这些纯纳什均衡中的一个,至于是哪一个取决于起点。因此,每个纯纳什均衡都有一个吸引盆地。我们从这类博弈中随机抽取一个博弈,研究吸引力盆地大小的联合分布。当行动数 $K$ 变为无穷大时,我们给出了每个纯纳什均衡的预期吸引盆地的渐近精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信