{"title":"A framework of specialized knowledge distillation for Siamese tracker on challenging attributes","authors":"Yiding Li, Atsushi Shimada, Tsubasa Minematsu, Cheng Tang","doi":"10.1007/s00138-024-01578-4","DOIUrl":null,"url":null,"abstract":"<p>In recent years, Siamese network-based trackers have achieved significant improvements in real-time tracking. Despite their success, performance bottlenecks caused by unavoidably complex scenarios in target-tracking tasks are becoming increasingly non-negligible. For example, occlusion and fast motion are factors that can easily cause tracking failures and are labeled in many high-quality tracking databases as challenging attributes. In addition, Siamese trackers tend to suffer from high memory costs, which restricts their applicability to mobile devices with tight memory budgets. To address these issues, we propose a Specialized teachers Distilled Siamese Tracker (SDST) framework to learn a student tracker, which is small, fast, and has enhanced performance in challenging attributes. SDST introduces two types of teachers for multi-teacher distillation: general teacher and specialized teachers. The former imparts basic knowledge to the students. The latter is used to transfer specialized knowledge to students, which helps improve their performance in challenging attributes. For students to efficiently capture critical knowledge from the two types of teachers, SDST is equipped with a carefully designed multi-teacher knowledge distillation model. Our model contains two processes: general teacher-student knowledge transfer and specialized teachers-student knowledge transfer. Extensive empirical evaluations of several popular Siamese trackers demonstrated the generality and effectiveness of our framework. Moreover, the results on Large-scale Single Object Tracking (LaSOT) show that the proposed method achieves a significant improvement of more than 2–4% in most challenging attributes. SDST also maintained high overall performance while achieving compression rates of up to 8x and framerates of 252 FPS and obtaining outstanding accuracy on all challenging attributes.\n</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"16 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01578-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, Siamese network-based trackers have achieved significant improvements in real-time tracking. Despite their success, performance bottlenecks caused by unavoidably complex scenarios in target-tracking tasks are becoming increasingly non-negligible. For example, occlusion and fast motion are factors that can easily cause tracking failures and are labeled in many high-quality tracking databases as challenging attributes. In addition, Siamese trackers tend to suffer from high memory costs, which restricts their applicability to mobile devices with tight memory budgets. To address these issues, we propose a Specialized teachers Distilled Siamese Tracker (SDST) framework to learn a student tracker, which is small, fast, and has enhanced performance in challenging attributes. SDST introduces two types of teachers for multi-teacher distillation: general teacher and specialized teachers. The former imparts basic knowledge to the students. The latter is used to transfer specialized knowledge to students, which helps improve their performance in challenging attributes. For students to efficiently capture critical knowledge from the two types of teachers, SDST is equipped with a carefully designed multi-teacher knowledge distillation model. Our model contains two processes: general teacher-student knowledge transfer and specialized teachers-student knowledge transfer. Extensive empirical evaluations of several popular Siamese trackers demonstrated the generality and effectiveness of our framework. Moreover, the results on Large-scale Single Object Tracking (LaSOT) show that the proposed method achieves a significant improvement of more than 2–4% in most challenging attributes. SDST also maintained high overall performance while achieving compression rates of up to 8x and framerates of 252 FPS and obtaining outstanding accuracy on all challenging attributes.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.