Piercing Hyperplane Theorem

Pub Date : 2024-07-05 DOI:10.1134/s0001434624030349
Burak Ünveren, Guy Barokas
{"title":"Piercing Hyperplane Theorem","authors":"Burak Ünveren, Guy Barokas","doi":"10.1134/s0001434624030349","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We prove that any strictly convex and closed set in <span>\\(\\mathbb{R}^n\\)</span> is an affine subspace if it contains a hyperplane as a subset. In other words, no hyperplane fits into a strictly convex and closed set <span>\\(C\\)</span> unless <span>\\(C\\)</span> is flat. We also present certain applications of this result in economic theory reminiscent of the separating and supporting hyperplane theorems. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624030349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that any strictly convex and closed set in \(\mathbb{R}^n\) is an affine subspace if it contains a hyperplane as a subset. In other words, no hyperplane fits into a strictly convex and closed set \(C\) unless \(C\) is flat. We also present certain applications of this result in economic theory reminiscent of the separating and supporting hyperplane theorems.

分享
查看原文
穿透超平面定理
Abstract 我们证明,如果 \(\mathbb{R}^n\) 中的任何严格凸封闭集包含一个超平面作为子集,那么它就是一个仿射子空间。换句话说,除非 \(C\) 是平的,否则没有超平面适合于严格凸封闭集 \(C\)。我们还介绍了这一结果在经济理论中的某些应用,让人想起分离和支撑超平面定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信