Study of the Complete Oscillation, Rotation, and Wandering Properties of a Differential System by the First Approximation

IF 0.6 4区 数学 Q3 MATHEMATICS
I. N. Sergeev
{"title":"Study of the Complete Oscillation, Rotation, and Wandering Properties of a Differential System by the First Approximation","authors":"I. N. Sergeev","doi":"10.1134/s0001434624030313","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> The concepts of complete oscillation, rotation, and wandering as well as complete nonoscillation, nonrotation, and nonwandering of a system of differential equations (with respect to its zero solution) are introduced. A one-to-one relationship between these properties and the corresponding characteristics of the system is established. Signs of a guaranteed possibility of studying them using the first approximation system, as well as examples for which that is not possible, are given. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":"63 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624030313","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The concepts of complete oscillation, rotation, and wandering as well as complete nonoscillation, nonrotation, and nonwandering of a system of differential equations (with respect to its zero solution) are introduced. A one-to-one relationship between these properties and the corresponding characteristics of the system is established. Signs of a guaranteed possibility of studying them using the first approximation system, as well as examples for which that is not possible, are given.

用第一近似法研究微分系统的完全振荡、旋转和徘徊特性
摘要 介绍了微分方程系统(关于其零解)的完全振荡、旋转和游走以及完全不振荡、不旋转和不游走的概念。这些性质与系统的相应特征之间建立了一一对应的关系。给出了使用第一近似系统研究这些特性的保证可能性的迹象,以及不可能使用第一近似系统的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信