{"title":"S. R. Nasyrov’s Problem of Approximation by Simple Partial Fractions on an Interval","authors":"P. A. Borodin, A. M. Ershov","doi":"10.1134/s0001434624030234","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> In 2014, S. R. Nasyrov asked whether it is true that simple partial fractions (logarithmic derivatives of complex polynomials) with poles on the unit circle are dense in the complex space <span>\\(L_2[-1,1]\\)</span>. In 2019, M. A. Komarov answered this question in the negative. The present paper contains a simple solution of Nasyrov’s problem different from Komarov’s one. Results related to the following generalizing questions are obtained: (a) of the density of simple partial fractions with poles on the unit circle in weighted Lebesgue spaces on <span>\\([-1,1]\\)</span>; (b) of the density in <span>\\(L_2[-1,1]\\)</span> of simple partial fractions with poles on the boundary of a given domain for which <span>\\([-1,1]\\)</span> is an inner chord. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624030234","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In 2014, S. R. Nasyrov asked whether it is true that simple partial fractions (logarithmic derivatives of complex polynomials) with poles on the unit circle are dense in the complex space \(L_2[-1,1]\). In 2019, M. A. Komarov answered this question in the negative. The present paper contains a simple solution of Nasyrov’s problem different from Komarov’s one. Results related to the following generalizing questions are obtained: (a) of the density of simple partial fractions with poles on the unit circle in weighted Lebesgue spaces on \([-1,1]\); (b) of the density in \(L_2[-1,1]\) of simple partial fractions with poles on the boundary of a given domain for which \([-1,1]\) is an inner chord.
期刊介绍:
Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.