On the Existence and Properties of Convex Extensions of Boolean Functions

IF 0.6 4区 数学 Q3 MATHEMATICS
D. N. Barotov
{"title":"On the Existence and Properties of Convex Extensions of Boolean Functions","authors":"D. N. Barotov","doi":"10.1134/s0001434624030210","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study the problem of the existence of a convex extension of any Boolean function <span>\\(f(x_1,x_2,\\dots,x_n)\\)</span> to the set <span>\\([0,1]^n\\)</span>. A convex extension <span>\\(f_C(x_1,x_2,\\dots,x_n)\\)</span> of an arbitrary Boolean function <span>\\(f(x_1,x_2,\\dots,x_n)\\)</span> to the set <span>\\([0,1]^n\\)</span> is constructed. On the basis of the constructed convex extension <span>\\(f_C(x_1,x_2,\\dots,x_n)\\)</span>, it is proved that any Boolean function <span>\\(f(x_1,x_2,\\dots,x_n)\\)</span> has infinitely many convex extensions to <span>\\([0,1]^n\\)</span>. Moreover, it is proved constructively that, for any Boolean function <span>\\(f(x_1,x_2,\\dots,x_n)\\)</span>, there exists a unique function <span>\\(f_{DM}(x_1,x_2,\\dots,x_n)\\)</span> being its maximal convex extensions to <span>\\([0,1]^n\\)</span>. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":"3 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624030210","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of the existence of a convex extension of any Boolean function \(f(x_1,x_2,\dots,x_n)\) to the set \([0,1]^n\). A convex extension \(f_C(x_1,x_2,\dots,x_n)\) of an arbitrary Boolean function \(f(x_1,x_2,\dots,x_n)\) to the set \([0,1]^n\) is constructed. On the basis of the constructed convex extension \(f_C(x_1,x_2,\dots,x_n)\), it is proved that any Boolean function \(f(x_1,x_2,\dots,x_n)\) has infinitely many convex extensions to \([0,1]^n\). Moreover, it is proved constructively that, for any Boolean function \(f(x_1,x_2,\dots,x_n)\), there exists a unique function \(f_{DM}(x_1,x_2,\dots,x_n)\) being its maximal convex extensions to \([0,1]^n\).

论布尔函数凸扩展的存在和性质
Abstract 我们研究了任意布尔函数 \(f(x_1,x_2,\dots,x_n))向集合 \([0,1]^n\)的凸扩展的存在性问题。构造了任意布尔函数 \(f(x_1,x_2,\dots,x_n)\) 到集合 \([0,1]^n\) 的凸扩展 \(f_C(x_1,x_2,\dots,x_n)\)。在所构造的凸扩展(f_C(x_1,x_2,\dots,x_n))的基础上,证明了任何布尔函数(f(x_1,x_2,\dots,x_n))都有无穷多个凸扩展到([0,1]^n\ )。此外,构造证明了对于任何布尔函数 \(f(x_1,x_2,\dots,x_n)\),都存在一个唯一的函数 \(f_{DM}(x_1,x_2,\dots,x_n)\),它是\([0,1]^n\)的最大凸扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信