On the Existence and Properties of Convex Extensions of Boolean Functions

Pub Date : 2024-07-05 DOI:10.1134/s0001434624030210
D. N. Barotov
{"title":"On the Existence and Properties of Convex Extensions of Boolean Functions","authors":"D. N. Barotov","doi":"10.1134/s0001434624030210","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study the problem of the existence of a convex extension of any Boolean function <span>\\(f(x_1,x_2,\\dots,x_n)\\)</span> to the set <span>\\([0,1]^n\\)</span>. A convex extension <span>\\(f_C(x_1,x_2,\\dots,x_n)\\)</span> of an arbitrary Boolean function <span>\\(f(x_1,x_2,\\dots,x_n)\\)</span> to the set <span>\\([0,1]^n\\)</span> is constructed. On the basis of the constructed convex extension <span>\\(f_C(x_1,x_2,\\dots,x_n)\\)</span>, it is proved that any Boolean function <span>\\(f(x_1,x_2,\\dots,x_n)\\)</span> has infinitely many convex extensions to <span>\\([0,1]^n\\)</span>. Moreover, it is proved constructively that, for any Boolean function <span>\\(f(x_1,x_2,\\dots,x_n)\\)</span>, there exists a unique function <span>\\(f_{DM}(x_1,x_2,\\dots,x_n)\\)</span> being its maximal convex extensions to <span>\\([0,1]^n\\)</span>. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624030210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of the existence of a convex extension of any Boolean function \(f(x_1,x_2,\dots,x_n)\) to the set \([0,1]^n\). A convex extension \(f_C(x_1,x_2,\dots,x_n)\) of an arbitrary Boolean function \(f(x_1,x_2,\dots,x_n)\) to the set \([0,1]^n\) is constructed. On the basis of the constructed convex extension \(f_C(x_1,x_2,\dots,x_n)\), it is proved that any Boolean function \(f(x_1,x_2,\dots,x_n)\) has infinitely many convex extensions to \([0,1]^n\). Moreover, it is proved constructively that, for any Boolean function \(f(x_1,x_2,\dots,x_n)\), there exists a unique function \(f_{DM}(x_1,x_2,\dots,x_n)\) being its maximal convex extensions to \([0,1]^n\).

分享
查看原文
论布尔函数凸扩展的存在和性质
Abstract 我们研究了任意布尔函数 \(f(x_1,x_2,\dots,x_n))向集合 \([0,1]^n\)的凸扩展的存在性问题。构造了任意布尔函数 \(f(x_1,x_2,\dots,x_n)\) 到集合 \([0,1]^n\) 的凸扩展 \(f_C(x_1,x_2,\dots,x_n)\)。在所构造的凸扩展(f_C(x_1,x_2,\dots,x_n))的基础上,证明了任何布尔函数(f(x_1,x_2,\dots,x_n))都有无穷多个凸扩展到([0,1]^n\ )。此外,构造证明了对于任何布尔函数 \(f(x_1,x_2,\dots,x_n)\),都存在一个唯一的函数 \(f_{DM}(x_1,x_2,\dots,x_n)\),它是\([0,1]^n\)的最大凸扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信