On the Convergence Rate in a Local Renewal Theorem for a Random Markov Walk

IF 0.6 4区 数学 Q3 MATHEMATICS
G. A. Bakai
{"title":"On the Convergence Rate in a Local Renewal Theorem for a Random Markov Walk","authors":"G. A. Bakai","doi":"10.1134/s0001434624030209","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> Suppose that a sequence <span>\\(\\{X_n\\}_{n\\ge 0}\\)</span> of random variables is a homogeneous irreducible Markov chain with finite set of states. Let <span>\\(\\xi_n\\)</span>, <span>\\(n\\in\\mathbb{N}\\)</span>, be random variables defined on the chain transitions. </p><p> The renewal function </p><span>$$u_k:=\\sum_{n=0}^{+\\infty} \\mathsf P(S_n=k), \\qquad k\\in\\mathbb{N},$$</span><p> where <span>\\(S_0:=0\\)</span> and <span>\\(S_n:=\\xi_1+\\dots + \\xi_n\\)</span>, <span>\\(n\\in\\mathbb{N}\\)</span>, is introduced. It is shown that this function converges to its limit at an exponential rate, and an explicit description of the exponent is given. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624030209","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that a sequence \(\{X_n\}_{n\ge 0}\) of random variables is a homogeneous irreducible Markov chain with finite set of states. Let \(\xi_n\), \(n\in\mathbb{N}\), be random variables defined on the chain transitions.

The renewal function

$$u_k:=\sum_{n=0}^{+\infty} \mathsf P(S_n=k), \qquad k\in\mathbb{N},$$

where \(S_0:=0\) and \(S_n:=\xi_1+\dots + \xi_n\), \(n\in\mathbb{N}\), is introduced. It is shown that this function converges to its limit at an exponential rate, and an explicit description of the exponent is given.

论随机马尔可夫散步局部更新定理的收敛率
Abstract 假设随机变量序列 \(\{X_n\}_{n\ge 0}\)是一个具有有限状态集的同构不可还原马尔可夫链。让 \(\xi_n\), \(n\in\mathbb{N}\), 都是定义在链转换上的随机变量。 更新函数 $$u_k:=\sum_{n=0}^{+\infty}\其中,引入了\(S_0:=0\)和\(S_n:=\xi_1+\dots +\xi_n\), \(nin\mathbb{N})。结果表明,该函数以指数速度收敛到其极限,并给出了指数的明确描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信