Continuum limit of the adaptive Kuramoto model

Rok Cestnik, Erik A. Martens
{"title":"Continuum limit of the adaptive Kuramoto model","authors":"Rok Cestnik, Erik A. Martens","doi":"arxiv-2407.03433","DOIUrl":null,"url":null,"abstract":"We investigate the dynamics of the adaptive Kuramoto model in the continuum\nlimit with slow adaptation. This model is distinguished by dense\nmultistability, where multiple states coexist for the same system parameters.\nThe underlying cause of this multistability is that some oscillators can lock\nat different phases or switch between locking and drifting depending on their\ninitial conditions. We identify new states, such as two-cluster states. To\nsimplify the analysis we introduce an approximate reduction of the model via\nrow-averaging of the coupling matrix. We derive a self-consistency equation for\nthe reduced model and present a stability diagram illustrating the effects of\npositive and negative adaptation. Our theoretical findings are validated\nthrough numerical simulations of a large finite system. Comparisons to previous\nwork highlight the significant influence of adaptation on synchronization\nbehavior.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the dynamics of the adaptive Kuramoto model in the continuum limit with slow adaptation. This model is distinguished by dense multistability, where multiple states coexist for the same system parameters. The underlying cause of this multistability is that some oscillators can lock at different phases or switch between locking and drifting depending on their initial conditions. We identify new states, such as two-cluster states. To simplify the analysis we introduce an approximate reduction of the model via row-averaging of the coupling matrix. We derive a self-consistency equation for the reduced model and present a stability diagram illustrating the effects of positive and negative adaptation. Our theoretical findings are validated through numerical simulations of a large finite system. Comparisons to previous work highlight the significant influence of adaptation on synchronization behavior.
自适应仓本模型的连续极限
我们研究了连续极限中具有慢适应性的自适应仓本模型的动力学。这种多态性的根本原因在于某些振荡器可以锁定在不同的阶段,或者根据初始条件在锁定和漂移之间切换。我们发现了新的状态,如双簇状态。为了简化分析,我们引入了对模型的近似还原,即耦合矩阵的平均化。我们推导出了简化模型的自洽方程,并给出了一个稳定图,说明了正适应和负适应的影响。我们的理论发现通过一个大型有限系统的数值模拟得到了验证。与前人的研究成果相比,我们发现适应性对同步行为有重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信