On an Initial Value Problem for Nonconvex-Valued Fractional Differential Inclusions in a Banach Space

Pub Date : 2024-07-05 DOI:10.1134/s0001434624030088
V. V. Obukhovskii, G. G. Petrosyan, M. S. Soroka
{"title":"On an Initial Value Problem for Nonconvex-Valued Fractional Differential Inclusions in a Banach Space","authors":"V. V. Obukhovskii, G. G. Petrosyan, M. S. Soroka","doi":"10.1134/s0001434624030088","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> Based on fixed point theory for condensing operators, an initial value problem for semilinear differential inclusions of fractional order <span>\\(q\\in(1,2)\\)</span> in Banach spaces is studied. It is assumed that the linear part of the inclusion generates a family of cosine operator functions and the nonlinear part is a multivalued map with nonconvex values. Local and global existence theorems for mild solutions of the initial value problem are proved. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624030088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on fixed point theory for condensing operators, an initial value problem for semilinear differential inclusions of fractional order \(q\in(1,2)\) in Banach spaces is studied. It is assumed that the linear part of the inclusion generates a family of cosine operator functions and the nonlinear part is a multivalued map with nonconvex values. Local and global existence theorems for mild solutions of the initial value problem are proved.

分享
查看原文
论巴拿赫空间中非凸值分式微分夹杂的初值问题
摘要 基于凝聚算子的定点理论,研究了巴拿赫空间中分数阶(q\in(1,2)\)半线性微分夹杂的初值问题。假设夹杂的线性部分产生一个余弦算子函数族,而非线性部分是一个具有非凸值的多值映射。证明了初值问题温和解的局部和全局存在定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信