Existence of Solutions for a Fourth-Order Periodic Boundary Value Problem near Resonance

Pub Date : 2024-07-05 DOI:10.1134/s0001434624030325
Xiaoxiao Su, Ruyun Ma, Mantang Ma
{"title":"Existence of Solutions for a Fourth-Order Periodic Boundary Value Problem near Resonance","authors":"Xiaoxiao Su, Ruyun Ma, Mantang Ma","doi":"10.1134/s0001434624030325","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We show the existence and multiplicity of solutions for the fourth-order periodic boundary value problem </p><span>$$\\begin{cases} u''''(t)-\\lambda u(t)=f(t,u(t))-h(t), \\qquad t\\in [0,1],\\\\ u(0)=u(1),\\;u'(0)=u'(1),\\; u''(0)=u''(1),\\;u'''(0)=u'''(1), \\end{cases}$$</span><p> where <span>\\(\\lambda\\in\\mathbb{R}\\)</span> is a parameter, <span>\\(h\\in L^1(0,1)\\)</span>, and <span>\\(f:[0,1]\\times \\mathbb{R}\\rightarrow\\mathbb{R}\\)</span> is an <span>\\(L^1\\)</span>-Carathéodory function. Moreover, <span>\\(f\\)</span> is sublinear at <span>\\(+\\infty\\)</span> and nondecreasing with respect to the second variable. We obtain that if <span>\\(\\lambda\\)</span> is sufficiently close to <span>\\(0\\)</span> from the left or right, then the problem has at least one or two solutions, respectively. The proof of main results is based on bifurcation theory and the method of lower and upper solutions. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624030325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show the existence and multiplicity of solutions for the fourth-order periodic boundary value problem

$$\begin{cases} u''''(t)-\lambda u(t)=f(t,u(t))-h(t), \qquad t\in [0,1],\\ u(0)=u(1),\;u'(0)=u'(1),\; u''(0)=u''(1),\;u'''(0)=u'''(1), \end{cases}$$

where \(\lambda\in\mathbb{R}\) is a parameter, \(h\in L^1(0,1)\), and \(f:[0,1]\times \mathbb{R}\rightarrow\mathbb{R}\) is an \(L^1\)-Carathéodory function. Moreover, \(f\) is sublinear at \(+\infty\) and nondecreasing with respect to the second variable. We obtain that if \(\lambda\) is sufficiently close to \(0\) from the left or right, then the problem has at least one or two solutions, respectively. The proof of main results is based on bifurcation theory and the method of lower and upper solutions.

分享
查看原文
共振附近的四阶周期性边界值问题的解的存在性
Abstract We show the existence and multiplicity of solutions for the fourth-order periodic boundary value problem $$\begin{cases} u''''(t)-\lambda u(t)=f(t,u(t))-h(t), \qquad t\in [0,1],\ u(0)=u(1),\;u''(0)=u''(1),; u'''(0)=u'''(1),; u''''(0)=u''''(1), end{cases}$$ 其中\(\lambda\in\mathbb{R}\) 是一个参数,\(h\in L^1(0,1)\), and\(f:(f:[0,1]/times\mathbb{R}\rightarrow\mathbb{R}\) 是一个 \(L^1\)-Carathéodory 函数。此外,\(f\)在\(+\infty\)处是次线性的,并且相对于第二个变量是非递减的。我们得到,如果\(\lambda\)从左边或右边足够接近\(0\),那么问题至少有一个或两个解。主要结果的证明基于分岔理论和上下解法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信