Boundary Stabilization for a Heat-Kelvin-Voigt Unstable Interaction Model, with Control and Partial Observation Localized at the Interface Only

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED
Irena Lasiecka, Rasika Mahawattege, Roberto Triggiani
{"title":"Boundary Stabilization for a Heat-Kelvin-Voigt Unstable Interaction Model, with Control and Partial Observation Localized at the Interface Only","authors":"Irena Lasiecka, Rasika Mahawattege, Roberto Triggiani","doi":"10.1007/s10957-024-02477-4","DOIUrl":null,"url":null,"abstract":"<p>A prototype model for a Fluid–Structure interaction is considered. We aim to stabilize [enhance stability of] the model by having access only to a portion of the state. Toward this goal we shall construct a compensator-based Luenberger design, with the following two goals: (1) reconstruct the original system asymptotically by tracking partial information about the full state, (2) stabilize the original unstable system by feeding an admissible control based on a system which is obtained from the compensator. The ultimate result is boundary control/stabilization of partially observed and originally unstable fluid–structure interaction with restricted information on the current state and without any knowledge of the initial condition. This prevents applicability of known methods in either open-loop or closed loop stabilization/control.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"10 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02477-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A prototype model for a Fluid–Structure interaction is considered. We aim to stabilize [enhance stability of] the model by having access only to a portion of the state. Toward this goal we shall construct a compensator-based Luenberger design, with the following two goals: (1) reconstruct the original system asymptotically by tracking partial information about the full state, (2) stabilize the original unstable system by feeding an admissible control based on a system which is obtained from the compensator. The ultimate result is boundary control/stabilization of partially observed and originally unstable fluid–structure interaction with restricted information on the current state and without any knowledge of the initial condition. This prevents applicability of known methods in either open-loop or closed loop stabilization/control.

Abstract Image

热-开尔文-伏依格特不稳定相互作用模型的边界稳定,仅在界面局部进行控制和部分观测
我们考虑了流体与结构相互作用的原型模型。我们的目标是通过只访问部分状态来稳定[增强]模型的稳定性。为实现这一目标,我们将构建一个基于补偿器的卢恩贝格尔设计,其目标有两个:(1) 通过跟踪全部状态的部分信息,渐进地重建原始系统;(2) 通过提供基于补偿器获得的系统的可接受控制,稳定原始不稳定系统。最终结果是,在当前状态信息有限且不了解初始条件的情况下,对部分观测到的原本不稳定的流固耦合系统进行边界控制/稳定。这就妨碍了已知方法在开环或闭环稳定/控制中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信