CAESar: Conditional Autoregressive Expected Shortfall

Federico Gatta, Fabrizio Lillo, Piero Mazzarisi
{"title":"CAESar: Conditional Autoregressive Expected Shortfall","authors":"Federico Gatta, Fabrizio Lillo, Piero Mazzarisi","doi":"arxiv-2407.06619","DOIUrl":null,"url":null,"abstract":"In financial risk management, Value at Risk (VaR) is widely used to estimate\npotential portfolio losses. VaR's limitation is its inability to account for\nthe magnitude of losses beyond a certain threshold. Expected Shortfall (ES)\naddresses this by providing the conditional expectation of such exceedances,\noffering a more comprehensive measure of tail risk. Despite its benefits, ES is\nnot elicitable on its own, complicating its direct estimation. However, joint\nelicitability with VaR allows for their combined estimation. Building on this,\nwe propose a new methodology named Conditional Autoregressive Expected\nShortfall (CAESar), inspired by the CAViaR model. CAESar handles dynamic\npatterns flexibly and includes heteroskedastic effects for both VaR and ES,\nwith no distributional assumption on price returns. CAESar involves a\nthree-step process: estimating VaR via CAViaR regression, formulating ES in an\nautoregressive manner, and jointly estimating VaR and ES while ensuring a\nmonotonicity constraint to avoid crossing quantiles. By employing various\nbacktesting procedures, we show the effectiveness of CAESar through extensive\nsimulations and empirical testing on daily financial data. Our results\ndemonstrate that CAESar outperforms existing regression methods in terms of\nforecasting performance, making it a robust tool for financial risk management.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In financial risk management, Value at Risk (VaR) is widely used to estimate potential portfolio losses. VaR's limitation is its inability to account for the magnitude of losses beyond a certain threshold. Expected Shortfall (ES) addresses this by providing the conditional expectation of such exceedances, offering a more comprehensive measure of tail risk. Despite its benefits, ES is not elicitable on its own, complicating its direct estimation. However, joint elicitability with VaR allows for their combined estimation. Building on this, we propose a new methodology named Conditional Autoregressive Expected Shortfall (CAESar), inspired by the CAViaR model. CAESar handles dynamic patterns flexibly and includes heteroskedastic effects for both VaR and ES, with no distributional assumption on price returns. CAESar involves a three-step process: estimating VaR via CAViaR regression, formulating ES in an autoregressive manner, and jointly estimating VaR and ES while ensuring a monotonicity constraint to avoid crossing quantiles. By employing various backtesting procedures, we show the effectiveness of CAESar through extensive simulations and empirical testing on daily financial data. Our results demonstrate that CAESar outperforms existing regression methods in terms of forecasting performance, making it a robust tool for financial risk management.
CAESar:条件自回归预期缺口
在金融风险管理中,风险价值(VaR)被广泛用于估算潜在的投资组合损失。VaR 的局限性在于它无法说明超出某一阈值的损失程度。预期缺口(ES)通过提供此类超额损失的条件预期来解决这一问题,提供了一种更全面的尾部风险衡量方法。尽管 ES 有其优点,但它本身并不可引,这使其直接估算变得复杂。然而,ES 与 VaR 的联合可验证性允许对它们进行联合估算。在此基础上,我们受 CAViaR 模型的启发,提出了一种名为条件自回归预期跌幅(CAESar)的新方法。CAESar 可灵活处理动态模式,并包含 VaR 和 ES 的异方差效应,且不对价格回报进行分布假设。CAESar 包括三个步骤:通过 CAViaR 回归估算 VaR,以自回归方式计算 ES,以及在确保非调和约束以避免跨越量级的同时联合估算 VaR 和 ES。通过采用各种回溯测试程序,我们在日常金融数据上进行了扩展模拟和实证测试,证明了 CAESar 的有效性。我们的结果表明,CAESar 在预测性能方面优于现有的回归方法,使其成为金融风险管理的可靠工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信